國立中正大學九十七學年度碩士班招生考試試題系所別:化學暨生物化學系 科目:物理分析化學

第/頁,共生

本節考題分兩部分: 第一部分 物理化學 及 第二部分 分析化學

第一部分 物理化學

壹:物理化學(50分)

Physical Chemistry

單選題(每題2.5分,共50分)

- 1. Which of the following observations can be explained by classical physics:
 - (a) black-body radiation (b) heat capacities (c) atomic spectra
 - (d) molecular spectra (e) none.
- 2. Which of the following statements are wrong concerning a particle in a box of length L:
 - (a) the energy is not quantized;
 - (b) the energy is proportional to L⁻²;
 - (c) the average value of its linear momentum is 0;
 - (d) the first excitation energy of a proton confined to a one-dimensional infinite square well with length of 1×10^{-15} m is 0.6×10^9 eV.
 - (e) None.
- 3. Helium is a monatomic gas. What is its approximate molar heat capacity at constant pressure?
 - (a) 8.314 J/K (b) 20.8 J/K (c) 4.185 J/K (d) 12.5 J/K (e) 0.082 J/K
- 4. Which of the following gas molecules have the highest mean velocity at room temperature?
 - $\mbox{(a) CO_2} \ \ \mbox{(b) O_2} \ \ \mbox{(c) H_2O} \ \ \mbox{(d) CI_2} \ \ \mbox{(e) NH_3}.$
- 5. A sodium lamp emits yellow light at 550nm. What is the frequency of the yellow light? (speed of light = 2.998×10⁸ms⁻¹)
 - (a) $5.45 \times 10^{14} \text{s}^{-1}$ (b) $5.45 \times 10^{11} \text{s}^{-1}$ (c) $1.65 \times 10^2 \text{s}^{-1}$ (d) $1.65 \times 10^5 \text{s}^{-1}$
 - (e) $1.82 \times 10^6 \text{s}^{-1}$
- 6. A heat engine operates between two temperatures, 600 K and 300 K. What is its maximum efficiency according to the second law of thermodynamics?
 - (a) 50% (b) 94% (c) 66% (d) 48% (e) 34%
- 7. The number of vibrational normal modes of H₂O is:
 - (a) 9 (b) 6 (c) 3 (d) 4 (e) 5.
- 8. One mole of liquid water at 100°C is in equilibrium with vapor at 1 atm pressure. If the enthalpy change associated with vaporization of liquid water at 100°C is 40.6kJ/mol, what is Δ G of the process?
 - (a) 40.6 kJ (b) 406 kJ (c) 0.0 kJ (d) 8.314 kJ (e) 22.4 kJ.
- 9. The rate constant of a reaction increases 10 times from 300 K to 400 K, what is the activation energy of the reaction? $(1n\ 10=2.303)$
 - (a) 0.23 kJ/mol (b) 2.3 kJ/mol (c) 23 kJ/mol (d) 230 kJ/mol
 - (e) 11.5 kJ/mol
- 10. The fundamental frequency of hydrogen molecule is 4159cm^{-1} . What is the force constant of the H-H bond? (1 amu = $1.66 \times 10^{-27} \text{ kg}$)
 - (a) 509 N/m (b) 2080 N/m (c) 320 N/m (d) 1006 N/m (e) 254 N/m

- 11. What is the de Broglie wavelength of a neutron a translational kinetic energy equal to kT at 300 K.
 (a) 0.0178 cm (b) 1.78×10⁻⁷ m (c) 178×10⁻¹² m (d) 178×10⁻¹⁵ m
 (e) 178×10⁻¹⁷ m (Planck constant = 6.626 10⁻³⁴ Js)
 12. What is the ground-state term symbol for the boron atom?
 (a) ²P_{1/2} (b) ²P_{3/2} (c) ³P₂ (d) ¹S₀ (e) ²D_{3/2}
 13. Which of the following is a correct approximation to the electronic wave function for helium atom?
 - (a) $1s(1)1s(2) [\alpha(1)\beta(2) \alpha(2)\beta(1)]$
 - (b) $1s(1)1s(2) \alpha(1)\alpha(2)$
 - (c) $1s(1)1s(2) \alpha(1)\beta(2)$
 - (d) $1s(1)2s(2) \alpha(1)\alpha(2)$
 - (e) $1s(1)2s(2) \alpha(1)\beta(2)$
- 14. Which of the following molecule has a pure rotational spectrum?
 - (a) NO (b) CH_4 (c) BF_3 (d) C_6H_6 (e) CO_2
- 15. Comparing the following energies in magnitude (1) ionization energy of H atom (2) bond energy of O₂ molecule (3) lowest electronic excited state energy of benzene (4) vibrational zero-point energy of H₂O (5) hydrogen bonding in HF dimmer.
 - (a) (2)>(1)>(4)>(3)>(5) (b) (3)>(1)>(2)>(5)>(4)
 - (c) (1)>(2)>(4)>(3)>(5) (d) (2)>(3)>(1)>(5)>(4)
 - (e) (1)>(2)>(3)>(4)>(5)
- 16. The number of pentagons in a fullerene C_{60} is:
 - (a) 12 (b) 15 (c) 10 (d) 20 (e) 32
- 17. What is the point group of C_{60} ?
 - (a) T_d (b) O_h (c) O_h (d) I_h (e) D_{5h}
- 18. A wooden artifact from a Chinese temple has a ¹⁴C activity of 22.4 counts per minute as compared with an activity of 31.7 counts per minute for a standard of zero age. From the half-life for ¹⁴C decay, 5730 years, what is the approximate age of the artifact?
 - (a) 2865 years (b) 11460 years (c) 1430 years (d) 1910 years (e) 5730 years.
- 19. A first-order chemical reaction has a rate constant of 300.0s⁻¹. Assuming that the rate of the reverse reaction is negligible, how long does it take for the reaction to be just over 95% complete? (log 2=0.301, log 3=0.477, ln 2=0.693, ln 3=1.099)
 - (a) 2.31 (b) 2.31×10^{-2} (c) 9.24×10^{-3} s (d) 2.31×10^{-3} s (e) 6.93×10^{-3} s
- 20. Which of following process is the fastest on average?
 - (a) intersystem crossing (b) molecular rotation (c) vibrational relaxation
 - (d) diffusion in liquid (e) crystallization in supersaturated solution

第二部分 分析化學

貳、分析化學(50分)

and the second of the second o

一、單選題 (每題三分)

- (21) Which of the following is the correct ratio of the number of moles of ferrous ion (Fe²⁺) to the number of moles of permanganate ion (MnO₄), when Fe²⁺ is completely reacted with MnO₄? (moles of Fe²⁺/ moles of MnO₄)
- (A) 1
- (B) 0.5
- (C) 0.2
- (D) 0.4
- (E) 5
- (22) Which of the following statement is CORRECT to decrease the retention time of a solute on a gas chromatography column?
- (A) decreasing the column temperature
- (B) increasing the column length
- (C) replacing the stationary phase with one in which the solute posses a larger partition coefficient.
- (D) all of the above
- (E) none of the above
- (23) For separating and measuring the compounds of high molecular weight, which of the following is an advantage(s) of high performance liquid chromatography (HPLC) over gas chromatography (GC)?
- I. in HPLC preparing vaporizable derivatives is not necessary
- II. HPLC column is more affordable
- III. HPLC detector becomes more sensitive as the compound molecular weight increase
- (A) I
- (B) II
- (C) III
- (D) I and II
- (E) I and III
- (24) Which of the following statement is CORRECT
- (A) Visible absorption spectroscopy is a direct and rapid method to determine rotational energy levels of organic molecules.
- (B) Atomic absorption spectroscopy is a direct and rapid method to identify organic functional group.
- (C) Infrared spectroscopy is a direct and rapid method to identify organic functional group.
- (D) Electron spin resonance spectroscopy is a direct and rapid method to determine rotational energy levels of organic molecules.
- (E) None of the above

(25) V	Which of the following statement is CORRECT
(A) Rotational (rigid rotor) energy levels are evenly separated.	
	ibrational (harmonic oscillator) energy levels are evenly separated
	ectronic (Born-Oppenheimer approximation) energy levels are evenly separated.
	Il of the above
(E) No	one of the above
(26) T	he solubility product constant of a slightly solute salt MX ₂ can be expressed as
(A) [N	f ²⁺][X ⁻]
(B) [M	$(1)^{2+1}$
(C) [M	$(1^{2^{+}})[X^{-}]^{2}$
(D) [M	$(2^{2+})^2[X^*]^2$
(E) No	one of the above
(27) A	high performance liquid chromatography does NOT have the following component(s) which
ag	as chromatography has.
I.	stationary phase
II.	detector
III.	device for temperature programming
(A) I	
(B) II	
(C) III	
(D) I a	nd II
(E) I a	nd III
(28) In	a mass spectrometer ions are separated due to
	size of the ions
II.	mass-to-charge ratio of the ions

- (29) Which of the following statement is CORRECT
- (A) The ionic strength of a solution depends on the charges of the ions
- (B) The ionic strength of a solution does NOT depend the concentration of the ions
- (C) The ionic strength of a solution depends on the sizes of the ions
- (D) All the above

III.

(A) I
(B) II
(C) III
(D) I and II
(E) I and III

(E) None of the above

number of ions

- (30) Which of the following are able to influence the retention time of an analyte in a high performance liquid chromatography column
- I. column length
- II. detector wavelength
- III. mobile phase composition
- (A) I
- (B) II
- (C) III
- (D) I and II
- (E) I and III

二、簡答題 (無須計算過程;每題四分)

(31) When the reduction potential of an electrode determined relative to a saturated calomel electrode is -0.70 volt, what is the reduction potential of this same electrode relative to the standard hydrogen electrode?

[Hint: the reduction potentials of a saturated calomel electrode and a standard hydrogen electrode are +0.24 and 0.0 volt respectively.]

- (32) When a recorded spectrum has the signal-to-noise ratio 4, please calculate the signal-to-noise ratio for the average of 25 spectra recorded in the same mannered.
- (33) Please calculate the pH value of the following solution system: diprotonic acid H_2A (100 mL, 0.1 M) of which k_1 and k_2 are 10^{-5} and 10^{-13} M respectively, mixed with NaOH (10 mL, 1M)

三、問答題(每題四分)

Answer the following questions regarding mass spectrometry.

- (34) Please illustrate two types of molecular ionization processes occurring at ambient pressure.
- (35) Explain why liquid chromatography can be connected with the above ionization sources in a straightforward manner?