國立中正大學九十九學年度學士班二年級轉學生招生考試試題

數學系、地球與環境科學系、物理學系

學系別: 化學暨生物化學系、資訊工程學系

科目:微積分

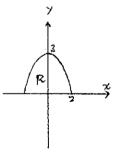
機械工程學系、通訊工程學系

· 第 1 節

第|頁,共|頁

PART I. Fill in the blank (9 points each. No partial credits)

1.
$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}\right) = \underline{\hspace{1cm}}$$


2. If f(x) is a function satisfying $f'(x) = \frac{\sin x}{x}$, $f(\frac{\pi}{2}) = a$, $f(\frac{7\pi}{3}) = b$,

then $\int_{-\pi/2}^{7\pi/2} f(x) dx =$ _____ (express your answer in terms of a and b).

3. If $\int_{1}^{\infty} (\frac{x}{ax^2 + 1} - \frac{2}{3x}) dx$ is a convergent improper integral, then a =______.

and the value of the improper integral is _____

- 4. The interval of convergence of the power series $\sum \frac{4^n}{n+1}(x-2)^n$ is ______
- 5. The line integral $\int_C F \cdot dr = \underline{\qquad}$, where $F = \frac{-yj + xi}{4x^2 + y^2}$, and C is the unit circle traced counterclockwise.
- 6. $\iint_{\mathbb{R}} \sin(9x^2 + 4y^2) dA = \underline{\hspace{1cm}}$, where R is part of the ellipse in the right figure.

- 7. $\lim_{n\to\infty} \frac{1}{n} (1 + \sqrt{2} + \sqrt[3]{3} + ... + \sqrt[n]{n}) = \underline{\hspace{1cm}}$
- 8. The area of the region that is inside both curves: the cardioid $r = 1 + \cos \theta$ and the circle r = 1 is _____.

PART II. Show your work to get full credits. (14 points each)

- 1. (a) Show that $\int_{0}^{\infty} xe^{-nx} dx = \frac{1}{n^2}$, n = 1, 2, 3...
 - (b) Use above result to show that $\int_0^\infty \frac{x}{e^x 1} dx = \sum_{n=1}^\infty \frac{1}{n^2}$
- 2. Let $y = h(t) = \frac{1}{1 + 9e^{-0.08t}}$ then y satisfies the differential equation y' = f(y).
 - (a) Find the function f(y).
 - (b) The function y = h(t) has a unique inflection point in $(0, \infty)$, find this point.