國立中正大學九十七學年度學士班二年級轉學生招生考試試題 學系別:化學暨生物化學系 科目:普通化學 11 0 第1頁,共5 選擇題,共40題,每題2.5分,共100分,答錯不倒扣。請在答案卷上作答。 - 1. You take an aspirin tablet (a compound consisting solely of carbon, hydrogen, and oxygen) with a mass of 1.00 g, burn it in air, and collect 2.20 g of carbon dioxide and 0.400 g water. The molar mass of aspirin is between 170 and 190 g/mol. The molecular form of aspirin is - (a) $C_6H_8O_5$, (b) $C_9H_8O_4$, (c) $C_8H_{10}O_5$, (d) $C_{10}H_6O_4$, (e) none of these. - What is the coefficient for oxygen when the following equation is balanced? $NH_3(g) + O_2(g) \rightarrow NO_2(g) + H_2O(g)$ - (a) 3, (b) 6, (c) 7, (d) 12, (e) 14. - 3. Consider the following reaction: $2A + B \rightarrow 3C + D$ - 3.0 mol A and 2.0 mol B react to form 4.0 mol C. What is the percent yield of this reaction? - (a) 50%, (b) 67%, (c) 75%, (d) 89%, (e) 100%. - 4. Which of the following statements correctly describes the signs of q and w for the following exothermic process at P = 1 atm and T = 370 K? $H_2O(g) \rightarrow H_2O(l)$ - (a) q and w are negative, (b) q is positive, w is negative, (c) q is negative, w is positive, (d) q and w are both positive, (e) q and w are both zero. - 5. Which of the following properties is (are) intensive properties? - I. Mass II. Temperature III. Volume IV. Concentration V. Energy - (a) I, III, and V, (b) II only, (c) II and IV, (d) III and IV, (e) I and V - 6. Using the following data, calculate the standard heat of formation of the compound ICl in kJ/mol: | . . . | H° (kJ/mol) | |-----------------------------------|-------------| | $Cl_2(g) \rightarrow 2Cl(g)$ | 242.3 | | $I_2(g) \rightarrow 2I(g)$ | 151.0 | | $ICl(g) \rightarrow I(g) + Cl(g)$ | 211.3 | | $I_2(s) \rightarrow I_2(g)$ | 62.8 | - (a) -211 kJ/mol, (b) -14.6 kJ/mol, (c) 16.8 kJ/mol, (d) 245 kJ/mol, (e) 439 kJ/mol. - 7. Which of the following statements is (are) true? - I. An excited atom can return to its ground state by absorbing electromagnetic radiation. - II. The energy of an atom is increased when electromagnetic radiation is emitted from it. - III. The energy of electromagnetic radiation increases as its frequency increases. - IV. An electron in the n = 4 state in the hydrogen atom can go to the n = 2 state by emitting electromagnetic radiation at the appropriate frequency. - V. The frequency and wavelength of electromagnetic radiation are inversely proportional to each other. - (a) II, III, IV, (b) III, V, (c) I, II, III, (d) III, IV, V, (e) I, II, IV. - 8. Which of these is an isoelectronic series? - (a) Na^+ , K^+ , Rb^+ , Cs^+ , (b) K^+ , Ca^{2+} , Ar, S^{2-} , (c) Na^+ , Mg^{2+} , S^{2-} , Cl^- , (d) Li, Be, B, C, (e) none of these. - Which of the following molecules has a bond order of 1.5? (a) O_2^+ , (b) N_2 , (c) O_2^- , (d) C_2 , (e) none of these. 10. The average rate of disappearance of ozone in the reaction $2O_3(g) \rightarrow 3O_2(g)$ is found to be 9.0×10^{-3} atm over a certain interval of time. What is the rate of appearance of O_2 during this interval? (a) 1.3×10^{-2} atm/s, (b) 9.0×10^{-3} atm/s, (c) 6.0×10^{-3} atm/s, (d) 3.0×10^{-5} atm/s, (e) 2.7×10^{-5} atm/s. 11. For a reaction in which A and B react to form C, the following initial rate data were obtained: | [A]
(mol/L) | [B]
(mol/L) | Initial Rate of Formation of (mol/L.s) | |----------------|----------------|--| | 0.10 | 0.10 | 1.00 | | 0.10 | 0.20 | 4.00 | | 0.20 | 0.20 | 8.00 | | | | | What is the rate law for the reaction? (a) Rate = k[A][B], (b) Rate = $k[A]^2[B]$, (c) Rate = $k[A][B]^2$, (d) Rate = $k[A]^2[B]^2$, (e) Rate = $k[A]^3$. 12. The reaction 2NO \rightarrow N₂ + O₂ has the following rate law: $$-\frac{D[NO]}{Dt} = 2k[NO]^2.$$ After a period of 2.0 x 10^3 s, the concentration of NO falls from an initial value of 2.8 x 10^{-3} mol/L to 2.0 x 10^{-3} mol/L. What is the rate constant, k? (a) $7.2 \times 10^{-2} \text{ M}^{-1}/\text{s}$, (b) $1.7 \times 10^{-4} \text{ M}^{-1}/\text{s}$, (c) $4.0 \times 10^{-4} \text{ M}^{-1}/\text{s}$, (d) $4.0 \times 10^{-7} \text{ M}^{-1}/\text{s}$, (e) $3.6 \times 10^{-2} \text{ M}^{-1}/\text{s}$. - 13. Consider the gaseous reaction $CO(g) + Cl_2(g) \iff COCl_2(g)$. What is the expression for K_p in terms of K? - (a) K(RT), (b) K/(RT), (c) $K(RT)^2$, (d) $K/(RT)^2$, (e) 1/K(RT). - 14. A 100-mL sample of water is placed in a coffee cup calorimeter. When 1.0 g of an ionic solid is added, the temperature decreases from 21.5°C to 20.8°C as the solid dissolves. For the dissolving of the solid (a) H < 0, (b) $S_{univ} > 0$, (c) $S_{sys} < 0$, (d) $S_{surr} > 0$, (e) none of thes. - 15. Which statement below is not upheld by the second law of thermodynamics? - (a) The change of entropy of the universe is always positive. (b) The entropy of a perfect crystal at 0 K is zero. (c) Machines always waste some energy. (d) A machine is never 100% efficient. (e) All of these. - 16. For the dissociation reaction of the acid HF $$HF(aq) \iff H^+(aq) + F^-(aq)$$ ΔS is observed to be negative. The best explanation is: - (a) This is the expected result since each HF molecule produces two ions when it dissociates. - (b) Hydration of the ions produces the negative value of ΔS . - (c) The reaction is expected to be exothermic and thus ΔS should be negative. - (d) The reaction is expected to be endothermic and thus ΔS should be negative. - (e) None of these can explain the negative value of ΔS . - 17. Which of the following is true for the cell shown here? $Z_n(s) | Z_n^{2+}(aq) | | C_r^{3+}(aq) | C_r(s)$ - (a) The electrons flow from the cathode to the anode. - (b) The electrons flow from the zinc to the chromium. - (c) The electrons flow from the chromium to the zinc. 第3頁,共5 - (d) The chromium is oxidized. - (e) The zinc is reduced. - 18. Which has the greatest number of unpaired electrons? - (a) The square planar complex $Ni(CN)4^{2-}$. (b) The tetrahedral complex $FeCl_{4-}$. (c) Neither of these have any unpaired electrons. (d) Both (a and b) have the same number (non-zero) of unpaired electrons. (e) More information is needed. - 19. How many unpaired electrons are there in the complex ion [Co(NO₃)₆]⁴⁻? For this ion the nitrate ligands produce a very strong crystal field. - (a) 1, (b) 2, (c) 3, (d) 4, (e) 5. - 20. Name the following: $$CH_{2}CH_{3}$$ $CH_{3}-C-C \equiv C-H$ H - (a) 1-hexyne, (b) 2-ethynyl butane, (c) 2-ethyl-3-butyne, (d) 3-methyl-1-pentyne, (e) 3-methyl-4-pentyne. - 21. Referring to the structures below, which statement is true? I. $$H-C-O-CH_2CH_2OH$$ $$_{ m III.}$$ HOCH₂CH₂ $-$ O $-$ C $-$ H - (a) I and II have different molecular formulas. (b) I and III are structural isomers of each other. (c) II and III are stereoisomers of each other. (d) II and III are different conformations of the same compound. (e) I and III are the same compound. - 22. Naturally occurring copper exists in two isotopic forms: ⁶³Cu and ⁶⁵Cu. The atomic mass of copper is 63.55 amu. What is the approximate natural abundance of ⁶³Cu? (a) 63%, (b) 90%, (c) 70%, (d) 50%, (e) 30%. - 23. You heat 3.970 g of a mixture of Fe₃O₄ and FeO to form 4.195 g Fe₂O₃. The mass percent of FeO originally in the mixture was: - (a) 12.1%, (b) 28.7%, (c) 71.3%, (d) 87.9%, (e) none of these. - 24. Consider two organic molecules, ethanol and benzene. One dissolves in water and the other does not. Why? - (a) They have different molar masses. (b) One is ionic, the other is not. (c) One is an electrolyte, the other is not. (d) Ethanol contains a polar O—H bond, and benzene does not. (e) Two of these. - 25. A solution contains the ions Ag⁺, Pb²⁺, and Ni²⁺. Dilute solutions of NaCl, Na₂SO₄, and Na₂S are available to separate the positive ions from each other. In order to effect separation, the solutions should be added in which order? - (a) Na₂SO₄, NaCl, Na₂S, (b) Na₂SO₄, Na₂S, NaCl, (c) Na₂S, NaCl, Na₂SO₄, (d) NaCl, Na₂S, Na₂SO₄, (e) NaCl, Na₂SO₄, Na₂S - 26. For the reaction below, $K_p = 1.16$ at 800°C. $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ If a 20.0-gram sample of CaCO₃ is put into a 10.0-liter container and heated to 800°C, what percent of the CaCO₃ will react to reach equilibrium? - (a) 14.6 %, (b) 65.9 %, (c) 34.1 %, (d) 100.0 %, (e) none of these. - 27. A 0.10-mol sample of a diprotic acid, H_2A , is dissolved in 250 mL of water. The K_{a1} of this acid is 1.0 x 10^{-5} and K_{a2} is 1.0 x 10^{-10} . Calculate the concentration of A^{2-} in this solution. (a) 1.0 x 10^{-5} M, (b) 2.0 x 10^{-3} M, (c) 4.0 x 10^{-6} M, (d) 1.0 x 10^{-10} M, (e) 0.40 M. - **28.** A 0.240 M solution of the salt NaA has a pH of 8.40. Calculate the K_a value of the acid HA. (a) 6.60×10^{-17} , (b) 1.05×10^{-5} , (c) 3.80×10^{-4} , (d) 2.63×10^{-11} , (e) none of these. - 29. Of energy, work, enthalpy, and heat, how many are state functions? (a) 0, (b) 1, (c) 2, (d) 3, (e) 4. - 30. Using the following data $$E^{\circ}$$ PbO₂ + 4H⁺ + SO₄²⁻ + 2e⁻ \rightarrow PbSO_{4(s)} + 2H₂O +1.69 PbO₂ + 4H⁺ + 2e⁻ \rightarrow Pb²⁺ + 2H₂O +1.46 calculate the K_{sp} value at 25°C for PbSO_{4(s)}. - (a) 1.7×10^{-9} , (b) 1.7×10^{-10} , (c) 1.7×10^{-7} , (d) 1.7×10^{-8} , (e) 1.7×10^{-6} . - 31. What is the wavelength of light that is emitted when an excited electron in the hydrogen atom falls from n = 5 to n = 2? - (a) 5.12×10^{-7} m, (b) 4.34×10^{-7} m, (c) 6.50×10^{-7} m, (d) 5.82×10^{-7} m, (e) none of these. - 32. The number of orbitals having a given value of l is equal to - (a) 2l + 1, (b) 2n + 2, (c) 3l, (d) $l + m_l$, (e) the number of lobes in each orbital - 33. Which of the following combinations of quantum numbers is not allowed? | $m_{(l)}$ | | $m_{(S)}$ | |-----------|-----------|----------------------------| | ì | 0 | 1/2 | | 0 | 0 | -1/2 | | 1 | -1 | 1/2 | | 3 | -2 | -1/2 | | 2 | 0 | 1/2 | | | 1 0 1 3 3 | 1 0
0 0
1 -1
3 -2 | - (a) Option 1, (b) Option 2, (c) Option 3, (d) Option 4, (e) Option 5. - 34. Consider the following processes: $$2A \rightarrow 1/2B + C$$ $\Delta H_1 = 5 \text{ kJ/mol}$ $(3/2)B + 4C \rightarrow 2A + C + 3D$ $\Delta H_2 = -15 \text{ kJ/mol}$ $$E + 4A \rightarrow C$$ $$\Delta H_3 = 10 \text{ kJ/mol}$$ Calculate ΔH for : C \rightarrow E + 3D - (a) 0 kJ/mol, (b) 10 kJ/mol, (c) -10 kJ/mol, (d) -20 kJ/mol, (e) 20 kJ/mol. - 35. Calculate ΔS° for the reduction of aluminum oxide by hydrogen gas : using the following standard entropy values. | $Al_2O_{3(s)} + 3H_{2(g)}$ | \rightarrow | $2Al_{(g)} + 3H_2O_{(g)}$ | | | |--|---------------|---------------------------------------|--|--| | using the following standard entropy values. | | | | | | | | (c) 199 J/K, (d) 209 J/K, (e) 229 J/K | | | | (a) 139 J/K, (b) 175 | J/IX, | (c) 199 J/K, (d) 209 J/K, (e) 229 J/K | | | - 36. In the cyanide ion (CN), the nitrogen has a formal charge of (a) -2, (b) -1, (c) 0, (d) 1, (e) 2. - 37. The configuration $(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2p})^1 (\pi_{2p})^1$ is the molecular orbital description for the ground state of (a) $$\text{Li}_2^+$$, (b) Be_2 , (c) B_2 , (d) B_2^{2-} , (e) C_2 . 38. The reaction of $(CH_3)_3CBr$ with hydroxide ion proceeds with the formation of $(CH_3)_3COH$. $(CH_3)_3CBr_{(aq)} + OH_{(aq)} \rightarrow (CH_3)_3COH_{(aq)} + Br_{(aq)}$ The following data were obtained at 55°C. | Exp. | | [OH ⁻] ₀
(mol/L) | Initial Rate (mol/L·s) | |------|------|--|------------------------| | 1 | 0.10 | 0.10 | 1.0×10^{-3} | | 2 | 0.20 | 0.10 | 2.0×10^{-3} | | 3 | 0.10 | 0.20 | 1.0×10^{-3} | | 4 | 0.30 | 0.20 | ? | What will the initial rate (in mol/L·s) be in Experiment 4? - (a) 3.0×10^{-3} , (b) 6.0×10^{-3} , (c) 9.0×10^{-3} , (d) 18×10^{-3} , (e) none of these. - 39. A certain metal fluoride crystallizes in such a way that the fluoride ions occupy simple cubic lattice sites, while the metal atoms occupy the body centers of half the cubes. The formula for the metal fluoride is: - (a) MF_2 , (b) M_2F , (c) MF, (d) MF_8 , (e) none of these. - 40. Which of the following statements is (are) false? - I. The hexagonal closest-packed structure is ABAB ---. - II. A body-centered cubic unit cell has four atoms per unit cell. - III. For unit cells having the same edge length, a simple cubic structure would have a smaller density than a body-centered cube. - IV. Atoms in a solid consisting of only one element would have six nearest neighbors if the crystal structure were a simple cubic array. - (a) I, (b) II, (c) II, III, (d) I, IV, (e) II, III, IV.