國立中正大學九十六學年度學士班二年級轉學生招生考試試題

數學系、地球與環境科學系、物理學系、

學系別: 化學暨生物化學系、資訊工程學系、

電機工程學系、通訊工程學系、經濟學系

第1節

第/頁,共2頁

科目:微積分

CALCULUS

PART I (70%) - FILL IN THE BLANKS

7% each NO partial credits.

- (1) Consider the function $f(x) = \sin(2x) 2\sin x$, where $x \in [-\pi, \pi]$. f(x) has 3 points of inflection and their x coordinates are given by _____.
- (2) The directional derivative of $f(x, y, z) = x^2 + yz$ at (1, -3, 2) in the direction of the path $\mathbf{r}(t) = t^2\mathbf{i} + 3t\mathbf{j} + (1 t^3)\mathbf{k}$ is _____.
- (3) $\lim_{x \to \infty} \frac{1}{x} \int_0^x \sin\left(\frac{1}{1+t}\right) dt =$. (Answer "None" if the limit does not exist.)
- (4) A baseball player stands 2 feet from home plate and watches a pitch fly by. In the diagram, x is the distance from the ball to home plate and θ is the angle indicating the direction of the player's gaze. The instantaneous rate of change θ' of the angle θ at which his eyes must move to watch a fastball with x' = -130 ft/s (feet per second) as it crosses home plate at x = 0 is _____. Given the fact that humans can maintain focus only when θ' ≤ 3, the fastest pitch that you could actually watch cross home plate is _____.

(5)
$$\int_0^{\frac{\pi}{2}} \frac{\sin(2x)}{(\sin x)^{4/3}} dx = \underline{\qquad}, \int_0^1 x \ln(x+3) dx = \underline{\qquad}.$$

- (6) The value of the infinite series $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$ is _____. (Answer "Diverges" if the series is not convergent.)
- (7) A rocket is launched with a constant thrust corresponding to an acceleration of u ft/s². Ignoring air resistance, the rocket's height after t seconds is given by $f(t, u) = \frac{1}{2}(u-32)t^2$ feet. Fuel usage for t seconds is proportional to u^2t , so the limited fuel

國立中正大學九十六學年度學士班二年級轉學生招生考試試題

數學系、地球與環境科學系、物理學系、

學系別: 化學暨生物化學系、資訊工程學系、

科目:微積分

電機工程學系、通訊工程學系、經濟學系

第1節

第2頁,共2頁

capacity of the rocket can be expressed by an equation of the form $u^2t = 10,000$. The value of u that maximizes the height that the rocket reaches is ______.

(8) Let Ω be the parallelogram bounded by the $x+y=0, \ x+y=1, \ x-y=0$ and x-y=2. Then $\iint_{\Omega} (x^2-y^2) dx dy =$ _____.

PART II (30%) - COMPUTATIONAL PROBLEMS

Show all your work. NO CREDITS if only present answers.

- (1) Let f and g be two functions defined and having finite third order derivatives f'''(x) and g'''(x) for all $x \in \mathbb{R}$. If $f(x)g(x) = \pi$, show that the following relations hold at those points where the denominators are nonzero.
 - (a) $(7\%) \frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)} = 0.$ (b) $(8\%) \frac{f''(x)}{f'(x)} - 2\frac{f'(x)}{f(x)} - \frac{g''(x)}{g'(x)} = 0.$
- (2) A function F(x, y, z) is called homogeneous of degree p if, for all values of the parameter λ , we have the identity

$$F(\lambda x, \lambda y, \lambda z) = \lambda^p F(x, y, z).$$

- (a) (7%) Is the function $G(x, y, z) = x^4 y^2 z \tan^{-1}(z/x)$ homogeneous? If yes, what is the degree? Show all your works.
- (b) (8%) Prove that if F(x, y, z) is differentiable and homogeneous of degree p, then F(x, y, z) satisfies

$$x\frac{\partial F}{\partial x} + y\frac{\partial F}{\partial y} + z\frac{\partial F}{\partial z} = pF.$$