國立中正大學九十九學年度碩士班招生考試試題 科目:一般化學

系所別:化學暨生物化學系

第1頁,共5頁

第1節

『普通化學』部份,單選題 25 題,總分 100 分

1. Using the following K_a values, indicate the correct order of base strength.

HNO₂
$$K_a = 4.0 \times 10^{-4}$$

HF $K_a = 7.2 \times 10^{-4}$
HCN $K_a = 6.2 \times 10^{-10}$

- (a) $CN^- > NO_2^- > F^- > H_2O > Cl^-$
- (b) $Ci^- > H_2O > F^- > NO_2^- > CN^-$
- (c) $CN^- > F^- > NO_2^- > Cl^- > H_2O$
- (d) $H_2O > CN^- > NO_2^- > F^- > Cl^-$

- (e) none of these
- 2. Determine the molarity of a solution of the weak acid $HClO_2$ ($K_a = 1.10 \times 10^{-2}$) if it has a pH of 1.25. (note: $10^{-1.25} = 0.0562$)
 - (a) 0.287 M

- (b) 1.23 M (c) 0.819 M (d) 3.17 M (e) 1.52 M
- 3. A 0.10-mol sample of a diprotic acid, H_2A , is dissolved in 250 mL of water. The K_{ql} of this acid is 1.0 x 10⁻⁵ and K_{a2} is 1.0 x 10⁻¹⁰. Calculate the concentration of
 - (a) 1.0×10^{-5} M (b) 2.0×10^{-3} M (c) 4.0×10^{-6} M (d) 1.0×10^{-10} M (e) 0.40 M
- 4. Which of the following molecules are nonlinear?
 - (a) XeF_2 , ICl_2^- (b) CO_2 , N_3^- (c) NO_2^- , O_3 (d) N_3^- , XeF_2 (e)all are linear
- 5. Which in the following answers are all paramagnetic?
 - (a) NO, NO₂, N₂O₄, C₂²⁻ (b) NO, NO₂, O₂²⁻, O₂ (c) O₂, O₂⁺, O₂, O₃

- (d) NO, NO₂, O₂, O₂ $^{+}$
- (e) NO_2 , O_2^+ , O_2 , O_3
- 6. What is the sum for all the coefficients when the following chemical equation is balanced?

OH'
$$(aq)$$
 + Cl₂ (g) \leftrightarrows Cl' (aq) + OCl' (aq) + H₂O(l)
(a) 5 (b) 6 (c) 7 (d) 8 (e) none of these

- 7. Consider a concentration cell as shown below. What is the cell potential at 25°C? $Ag[Ag^{+}(0.01M)][Ag^{+}(1.0M)]Ag$
 - (a) 0.0591 V (b) 0.591 V (c) 0.118 V (d) 0.018 V (e) none of these

國立中正大學九十九學年度碩士班招生考試試題系所別:化學暨生物化學系 科目:一般化學

第1節

第2頁,共5頁

8. It took 250 seconds for 50% for a particular substance to decompose. If the initial concentration was 0.05 M and the decomposition reaction follows second-order kinetics, what is the value of rate constant?

```
(a) 8.0 \times 10^{-2} \text{ L/mol s}
```

(d)
$$4.0 \times 10^{-2} \text{ L/mol/s}$$

(e)
$$8.0 \times 10^{-3}$$
 L/mol's

9. How many geometric isomers does the complex [Cr(en)(NH₃)₂l₂]⁺ have? Note: en is an abbreviation for the bidentate ligand ethylenediamine.

(e) none of these

(a) 2 (b) 3 (c) 4 (d) 5

10. How many unpaired electrons are present in the tetrahedral ion FeCl₄?

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

11. What is the sum for all the coefficients when the chemical equation for the following Galvanic cell is balanced?

 $Pt(s)|ClO_3(aq), ClO_4(aq), H^+(aq)|H^+(aq), MnO_4(aq), Mn^{2+}(aq)|Pt(s)$

(a) 23 (b) 24 (c) 25 (d) 26 (e) none of these

12. Calculate ΔH for the synthesis of diborane from its elements, according to the equation, $2B(s) + 3H_2(g) \rightarrow B_2H_6(g)$, using the following data:

 $2B(s) + 3/2 O_2(g) \rightarrow B_2O_3(s)$

 $\Delta H = -1273 \text{ kJ}$

 $B_2H_6(g) + 3O_2(g) \rightarrow B_2O_3(s) + 2H_2O(g)$

 $\Delta H = -2035 \text{ kJ}$

(e) none of these

 $H_2(g) + 1/2 O_2(g) \rightarrow H_2O(l)$

 $\Delta H = -286 \text{ kJ}$

 $H_2O(l) \rightarrow H_2O(g)$

 $\Delta H = 44 \text{ kJ}$

(a) 432 kJ (b) -48 kJ (c) 36 kJ (d) -168 kJ

13. A sample weighing 0.456 g was dissolved in 20.0-g benzene, and the freezing-point depression was determined to be 0.250°C. The freezing-point depression constant (K_f) for benzene is 5.12 °C kg/mol. What is the molar mass of the sample?

(a) 546 g/mol (b) 648 g/mol (c) 345 g/mol (d) 467 g/mol (e) none of these

⁽b) 1.0 x 10⁻⁴ L/mol's

⁽c) 1.0×10^{-3} L/mol s

立中正大學九十九學年度碩士班招生考試試題 科目:一般化學

系所別:化學暨生物化學系

第3頁,共5頁

第1節

14. When ignited, solid ammonium dichromate decomposes in a fiery display. This is the reaction for a "volcano" demonstration. The decomposition produces nitrogen gas, water vapor, and chromium(III) oxide. The temperature is constant at 25°C. Given the following thermodynamic parameters, determine ΔG° (in kJ/mol).

Substance		$\mathcal{H}^{o}_{f}(kJ/mol)$	S° (kJ/mol [*] K)		
Cr ₂ O ₃ (g	g) -	-1140	0.0	812	
$H_2O(l)$	•	-242	0.1	187	
$N_2(g)$		0	0.1915		
$(NH_4)_2Cr_2O_7$		-22.5	0.1137		
(a) -6119.7	(b) -2274.7	(c) -3042.6	(d) -5419.3	(e) -1488.8	

15. Due to environmental concerns, researchers have been seeking low-cost alternatives to fossil fuels. What is a promising alternative, which can be liberated from water, using solar energy?

(a) hydrogen

(b) oxygen

(d) ozone (c) carbon

- none of these (e)
- 16. Which of the following statements is true?
 - (a) When two opposing processes are proceeding at identical rates, the system is at equilibrium.
 - (b) Catalysts are an effective means of changing the position of an equilibrium.
 - (c) The concentration of the products equals that of reactants and is constant at equilibrium.
 - (d) An endothermic reaction shifts toward reactants when heat is added to the reaction.
 - (e) None of these statements is true.
- 17. The equilibrium constant K_{μ} (in atm) for the dissociation reaction of Cl_2 was measured as a function of temperature (in K).

A graph of $\ln K_p$ versus 1/T for this reaction gives a straight line with a slope of -1.352 $\times 10^4$ and an intercept of 14.51. (gas constant R = 8.31451 J/K/mol or 0.08206 Latm/K mol)

The value of ΔH for this dissociation reaction is:

- (a) -122.1 kJ
- (b) 112.4 kJ
- (c) -112.4 kJ
 - (d) 122.1 kJ

- (e) none of these
- 18. Calculate the percent dissociation for a 0.22 M solution of chlorous acid (HClO₂,

 $K_0 = 1.2 \times 10^{-2}$

- (a) 6 % (b) 16 % (c) 21 % (d) 28%
- (e) none of these

立中正大學九十九學年度碩士班招生考試試題

系所別:化學暨生物化學系

科目:一般化學

第1節

第4頁,共5頁

10	Which	of the	following	found	the	law of	definite	proportion?
19.	WHICH	or me	TOHOWING	rouna	HIC	iaw or	actitité	proportion:

- (a) Antoine Lavoirsier
- (b) Robert Boyle
- (c) John Dalton
- (d) Joseph Priestly
- (e) Joseph Proust
- 20. Which of the following is the point group of ICl₃?
 - $(a) \ C_{2\nu} \qquad (b) \ D_{3h}$
- (c) C_{3v}
- (d) D_{3d} (e) C_s

21. Given the following information:

 $Li(s) \rightarrow Li(g)$

heat of sublimation of Li(s) = 166 kJ/mol

 $HCl(g) \rightarrow H(g) + Cl(g)$

bond energy of HCI = 427 kJ/mol

 $Li(g) \rightarrow Li^+(g) + e^-$

ionization energy of Li(g) = 520. kJ/mol

 $Cl(g) + e^{-} \rightarrow Cl^{-}(g)$

electron affinity of Cl(g) = -349 kJ/mollattice energy of LiCl(s) = -829 kJ/mol

 $Li^+(g) + Cl^-(g) \rightarrow LiCl(s)$

 $H_2(g) \rightarrow 2H(g)$

bond energy of $H_2 = 432 \text{ kJ/mol}$

Calculate the net change in energy for the reaction

$$2Li(s) + 2HCl(g) \rightarrow 2LiCl(s) + H_2(g)$$

- (a) 363 kJ
- (b) -562 kJ
- (c) 179 kJ
- (d) -73 kJ
- (e) None of these
- 22. Which of the following exhibits the strongest ligand field in octahedral complexes?
 - (a) NH_3
- (b) OH-
- (c) CN⁻
- (d) Cl=
- 23. Which of the following cannot be chiral?
 - (a) $[Co(en)_3]^{3+}$
 - (b) $[Cr(en)(NH_3)_2I_2]^{\dagger}$
 - (c) sodium ammonium tartrate
 - (d) $[Co(NH_4)_2Cl_2]^+$
 - (e) fructose

國立中正大學九十九學年度碩士班招生考試試題 科目:一般化學

系所別:化學暨生物化學系

第1節

第5頁,共5頁

24. Consider the following data concerning the equation:

$$H_2O_2 + 31^- + 2H^+ \rightarrow I_3^- + 2H_2O$$

	$[H_2O_2]$	[1-]	[H ⁺]	rate
I	0.100 M	$5.00 \times 10^{-4} M$	$1.00 \times 10^{-2} M$	0.137 M/sec
11.	0.100 M	$1.00 \times 10^{-3} M$	$1.00 \times 10^{-2} M$	0.268 M/sec
III.	0.200 M	$1.00 \times 10^{-3} M$	$1.00 \times 10^{-2} M$	0.542 M/sec
IV.	0.400 M	$1.00 \times 10^{-3} M$	$^{\circ}2.00 \times 10^{-2} \text{ M}$	1.084 M/sec

The rate law for this reaction is

- (a) rate = $k[H_2O_2][I^-][H^+]$
- (b) rate = $k[H_2O_2]^2[I^-]^2[H^+]^2$
- (c) rate = $k[I^-][H^+]$
- (d) rate = $k[H_2O_2][H^+]$
- (e) rate = $k[H_2O_2][I^-]$
- 25. In 2009, Venkatraman Ramakrishnan, Thomas A. Steitz and Ada E. Yonath won the Nobel prize in chemistry for which of the following contribution?
 - (a) studies of the molecular basis of eukaryotic transcription
 - (b) discovery and development of the green fluorescent protein
 - (c) studies of chemical processes on solid surfaces
 - (d) studies of the structure and function of the ribosome
 - (e) development of the metathesis method in organic synthesis