國立中正大學九十八學年度碩士班招生考試試題系所別:化學暨生物化學系科目:一般化學

第1節

第/頁,共6頁

I.	單選題 30 題, 每題 3 分, 共 90 分
1.	The boiling of water is a
	 a) physical change because the water merely disappears. b) physical change because the gaseous water is chemically the same as the liquid. c) chemical change because heat is needed for the process to occur. d) chemical change because a gas (steam) is given off. e) chemical and physical damage.
2.	A solution is also called a
	a) homogeneous mixture. b) heterogeneous mixture. c) pure mixture. d) compound. e) distilled mixture.
3.	What is the bond order of C ₂ +?
	a) 0 b) 0.5 c) 1 d) 1.5 e) 2
4.	You heat 3.970 g of a mixture of Fe_3O_4 and FeO to form 4.195 g Fe_2O_3 (atomic mass of $Fe=55.847$). The mass percent of FeO originally in the mixture was:
	a) 12.1% b) 28.7% c) 71.3% d) 87.9% e) none of these
5.	You heat 3.970 g of a mixture of $\rm Fe_3O_4$ and FeO to form 4.195 g $\rm Fe_2O_3$. The mass of oxygen reacted is
	a) 0.225 g. b) 0.475 g. c) 1.00 g. d) cannot be determined e) none of these
6.	Aqueous solutions of sodium sulfide and copper(II) chloride are mixed together. Which statement is correct?
	a) Both NaCl and CuS precipitate from solution.b) No precipitate forms.c) CuS will precipitate from solution.
	NaCl will precipitate from solution. No reaction will occur.
-	Circuit (Noning and in a sidio modie)

Given the following reaction in acidic media:

$$\mathrm{Fe^{2+}} + \mathrm{Cr_2O_7^{2-}} \rightarrow \mathrm{Fe^{3+}} + \mathrm{Cr^{3+}}$$

answer the following question: The coefficient for water in the balanced reaction is

a) 1. b) 3. c) 5. d) 7. e) none of these

國立中正大學九十八學年度碩士班招生考試試題系所別:化學暨生物化學系 科目:一般化學

第1節

第2頁,共6頁

8.	A sample of oxygen gas has a volume of 4.50 L at 27°C and 800.0 torr. How
	many oxygen molecules does it contain?

a) 1.16×10^{23} b

b) 5.8×10^{22} c) 2.32×10^{24}

d) 1.16×10^{22}

e) none of these

9. Sulfamic acid, ${\rm HSO_3NH_2}$ (molar mass = 97.1 g/mol), is a strong monoprotic acid that can be used to standardize a strong base:

$$HSO_3NH_2(aq) + KOH(aq) \rightarrow KSO_2NH_2(aq) + H_2O(1)$$

A 0.179-g sample of HSO_3NH_2 required 19.4 mL of an aqueous solution of KOH for complete reaction. What is the molarity of the KOH solution?

a) 9.25 M

b) $9.50 \times 10^{-5} \text{ M}$

c) 0.0950 M

d) 0.194 M e) none of these

10. Consider the following numbered processes:

I. $A \rightarrow 2B$

 ΔH_1

II. $B \rightarrow C + D$

 ΔH_2

III. $E \rightarrow 2D$ ΔH_3

 ΔH for the process A \rightarrow 2C + E is

c) $\Delta H_1 + \Delta H_2 - \Delta H_3$

a) $\Delta H_1 + \Delta H_2 + \Delta H_3$ d) $\Delta H_1 + 2\Delta H_2 - \Delta H_3$ b) $\Delta H_1 + \Delta H_2$ e) $\Delta H_1 + 2\Delta H_2 + \Delta H_3$

- 11. Which of the following statements is true?
 - a) The first ionization potential of H is greater than that of He.
 - b) The ionic radius of Fe⁺ is larger than that of Fe³⁺.
 - c) The ionization energy of S²⁻ is greater than that of Cl⁻.
 - d) The atomic radius of Li is larger than that of Cs.
 - e) All are false.

12. The statement that the 1st ionization energy for an oxygen atom is lower than the 1st ionization energy for a nitrogen atom is

- a) consistent with the general trend relating changes in ionization energy across a period from left to right because it is easier to take an electron from an oxygen atom than from a nitrogen atom.
- b) consistent with the general trend relating changes in ionization energy across a period from left to right because it is harder to take an electron from an oxygen atom than from a nitrogen atom.
- inconsistent with the general trend relating changes in ionization energy across a period from left to right and due the fact that the oxygen atom has two doubly occupied 2p orbitals and nitrogen has only one.
- d) inconsistent with the general trend relating changes in ionization energy across a period from left to right and due to the fact that oxygen has one doubly occupied 2p orbital and nitrogen does not.
- e) incorrect.

國立中正大學九十八學年度碩士班招生考試試題 科目:一般化學 系所別:化學暨生物化學系

第1節

第3頁,共6頁

13. Using the following bond energies

Bond	Bond Energy (kJ/mol)
C≡C	839
C-H	413
O=O	495
C=O	799
O-H	467

estimate the heat of combustion for one mole of acetylene:

- $C_2H_2(g) + (5/2)O_2(g) \rightarrow 2CO_2(g) + H_2O(g)$
 - b) -1228 kJ c) -447 kJ
- d) +447 kJ
- e) +365 kJ
- 14. The hybridization of the phosphorus atom in the cation PH₂⁺ is:
 - b) sp³
- c) dsp d) sp
- e) none of these
- 15. In which of the following processes will energy be evolved as heat?
 - a) sublimation
- b) crystallization
- vaporization

- d) melting
- e) none of these
- 16. A 5.50-gram sample of a compound as dissolved in 250. grams of benzene. The freezing point of this solution is 1.02°C below that of pure benzene. What is the molar mass of this compound? (*Note:* K_f for benzene = 5.12°C/m.)
 - a) 22.0 g/mol
- b) 110. g/mol
- c) 220. g/mol

- d) 44.0 g/mol
- e) none of these
- 17. Tabulated below are initial rate data for the reaction

$$2\text{Fe}(\text{CN})_6^{3-} + 2\text{I}^- \rightarrow 2\text{Fe}(\text{CN})_6^{4-} + \text{I}_2$$

Run	[Fe(CN) ₆ ³⁻] ₀	[I-] ₀	[Fe(CN) ₆ ⁴⁻] ₀	$[I_2]_0$	Initial Rate (M/s)
1	0.01	0.01	0.01	0.01	1×10^{-5}
2	0.01	0.02	0.01	0.01	2×10^{-5}
3	0.02	0.02	0.01	0.01	8×10^{-5}
4	0.02	0.02	0.02	0.01	8×10^{-5}
5	0.02	0.02	0.02	0.02	R ∨ 10-5

The value of k is:

- a) $10^7 \,\mathrm{M}^{-5} \,\mathrm{s}^{-1}$
- $10^3\,M^{-3}\,s^{-1}$
 - c) $10 \ \mathrm{M^{-2} \ s^{-1}}$
- d) $50 \text{ M}^{-2} \text{ s}^{-1}$
- e) none of these
- 18. The OH radical disproportionates according to the elementary chemical

OH + OH \rightarrow H₂O + O. This reaction is second order in OH. The rate constant for the reaction is 2.0×10^{-12} cm³/molecule · s at room temperature. If the initial OH concentration is 1.0×10^{13} molecules/cm³, what is the first half-life for the reaction?

- b) 2.0×10^{-3} s a) 20. s
- c) 0.050 s
- d) 0.035 s
- e) 12 s

國立中正大學九十八學年度碩士班招生考試試題系所別:化學暨生物化學系 科目:一般化學

第1節

第4頁,共6頁

- 19. A 1-L container originally holds 0.4 mol of N_2 , 0.1 mol of O_2 , and 0.08 mole of NO. If the volume of the container holding the equilibrium mixture of N_2 , O_2 , and NO is decreased to 0.5 L without changing the quantities of the gases present, how will their concentrations change?
 - a) The concentration of NO will increase; the concentrations of N_2 and O_2 will decrease.
 - b) The concentrations of N_2 and O_2 will increase; and the concentration of NO will decrease.
 - c) The concentrations of N_2 , O_2 , and NO will increase.
 - d) The concentrations of N_2 , O_2 , and NO will decrease.
 - e) There will be no change in the concentrations of N_2 , O_2 , and NO.
- 20. Which factor listed below is most important in determining the strength of an oxyacid?
 - a) the size of the molecule
 - b) the ability of the molecule to change atomic orientation
 - c) the identity of the central atom in the molecule
 - d) the number of oxygen atoms present in the molecule
 - e) none of these
- 21. Calculate the pH of a 0.005 M solution of potassium oxide, K₂O.
 - a) 12.0
- b) 11.7 c) 7.0
- d) 23
- e) 2.0
- 22. Consider the titration of 100.0 mL of 0.250 M aniline ($K_b = 3.8 \times 10^{-10}$) with 0.500 M HCl. For calculating the volume of HCl required to reach a pH of 8.0, which of the following expressions is correct? (x = volume in mL of HCl required to reach a pH of 8.0)

a)
$$\frac{0.5x - (100)(0.25)}{100 + x}$$
 = [aniline]

- b) $[H^+] = x$
- c) $\frac{0.5x}{100 + x} = [aniline]$
- d) $\frac{25 0.5x}{100 + x}$ $-10^{-6} = [aniline]$
- e) none of these

國立中正大學九十八學年度碩士班招生考試試題系所別:化學暨生物化學系 科目:一般化學

第1節

第5頁,共6頁

23. Consider the reaction

 $2NO_2(g) \rightleftharpoons N_2O_4(g); \Delta H^\circ = -56.8 \text{ kJ} \qquad \Delta S^\circ = -175 \text{ J/K}$

In a container (at 298 K) $N_2O_4(g)$ and $NO_2(g)$ are mixed with initial partial pressures of 2.4 atm and 0.42 atm, respectively. Which of the following statements is correct?

- a) Some N₂O₄(g) will decompose into NO₂(g).
- b) Some NO₂(g) will dimerize to form N₂O₄(g).
- c) The system is at equilibrium at these initial pressures.
- d) The final total pressure must be known to answer this question.
- e) None of these.

24-29. Refer to the galvanic cell below (the contents of each half-cell are written beneath each compartment):

The standard reduction potentials are as follows:

$$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$$
 $E^\circ = 1.51 \text{ V}$
 $Cr_2O_7^{2-} + 14H^+ + 5e^- \rightarrow 2Cr^{3+} + 7H_2O$ $E^\circ = 1.33 \text{ V}$

- 24. When current is allowed to flow, which species is oxidized?
 - a) $Cr_2O_7^{2-}$ b) Cr^{3+}
- +
- c) MnO₄- d) Mn²⁺
- e) H+

- 25. What is the value of E°_{cell} ?
 - a) -0.18 V
- b) 2.84 V
- c) 0.18 V
- d) 1.79 V
- e) 2.29 V
- 26. What is the value of *Q*, the reaction quotient, for this cell reaction?
 - a) 6.7×10^{40}
- b) 1.5×10^{-41}
- c) 1.5×10^{-4}
- d) 6.7×10^3
- 27 In which direction do electrons flow in the external circuit?
 - a) left to right
 - b) right to left
 - c) no current flows; the cell is at equilibrium
 - d) cannot be determined.
 - e) none of these

國立中正大學九十八學年度碩士班招生考試試題 系所別:化學暨生物化學系 科目:一般化學

第6頁,共6頁

第11	節													第
		28.	In the b									coeffic	ient for	H+?
			a) 5	D,) 6	c	30	a)	22	e _.) 2			
		29.	How m the valu	any elec ie of n i	etron: n the	s are t Nern	ransf st equ	erred ıation	in tl)?	ne balanc	ed rea	action (i.e., wh	at will be
			a) 5	b)	6	c)	30		d)	22	e)	2		
		30.	How n [FeCl ₄]-	nany ur ?	paire	ed elec	ctrons	s are t	here	in the te	trahe	dral co	mplex i	on
			a) 1	b)	2	c)	3	d)	4	e) 5				
	·	II. t	十算問答:	題,每	題 2:	分,扌	+ 10	分						
		Deter	mine the	point	grou	p for	each	of th	e fo	llowing				
		(1) Cll	F ₃											
		(2) I ₃ -												
		(3) O ₃												
		(0) 03												
		(4) TeI	F5 ⁻											
		(5) H ₂ (C=C=CH	I_2										