國立中正大學九十七學年度碩士班招生考試試題

系所別:化學暨生物化學系 科目:一般化學

第/頁,共6

I. 單選題 30 題,每題 3 分,共 90 分

- 1. A piece of indium with a mass of 16.6 g is submerged in 46.3 cm³ of water in a graduated cylinder. The water level increases to 48.6 cm³. The correct value for the density of indium from these data is:
 - a) 7.217 g/cm^3 b) 7.2 g/cm^3 c) 0.14 g/cm^3 d) 0.138 g/cm^3
 - e) more than 0.1 g/cm³ away from any of these values.
- 2. A species with 12 protons and 10 electrons is
 - a) Ne^{2+} b) Ti^{2+} c) Mg^{2+} d) Mg e) Ne^{2-}
- 3. Rutherford's experiment was important because it showed that:
 - a) radioactive elements give off alpha particles.
 - b) gold foil can be made to be only a few atoms thick.
 - c) a zinc sulfide screen scintillates when struck by a charged particle.
 - d) the mass of the atom is uniformly distributed throughout the atom.
 - e) an atom is mostly empty space.
- 4. You heat 3.970 g of a mixture of Fe_3O_4 and FeO to form 4.195 g Fe_2O_3 . The mass percent of FeO originally in the mixture was: (atomic mass: Fe, 55.847; O, 15.9994)
 - a) 12.1% b) 28.7%
- c) 71.3%
- d) 87.9% e) none of these
- 5. What is the coefficient for oxygen when the following equation is balanced?

 $NH_3(g) + O_2(g) \rightarrow NO_2(g) + H_2O(g)$

- a) 3
- b) 6
- c) 7
- d) 12 e) 14
- 6. A 3.00-g sample of an alloy (containing only Pb and Sn) was dissolved in nitric acid (HNO₃). Sulfuric acid was added to this solution, which precipitated 2.93 g of PbSO₄. Assuming that all of the lead was precipitated, what is the percentage of Sn in the sample? (molar mass of PbSO₄ = 303.3 g/mol. atomic mass: Pb, 207.2; Sn, 118.69)
 - a) 33.3% Sn b) 17.7% Sn c) 50.0% Sn d) 66.7% Sn e) 2.00% Sn

7.	Calcium	hydride	combines	with	water	according	to	the equation
----	---------	---------	----------	------	-------	-----------	----	--------------

$$CaH_2(s) + 2H_2O(l) \rightarrow 2H_2(g) + Ca(OH)_2(s)$$

Beginning with 84.0 g of CaH_2 and 36.0 g of H_2O , what volume of H_2 will be produced at 273 K and a pressure of 1520 torr? (atomic mass: Ca, 40.08. gas constant, 0.08206 L atm/K·mol)

- a) 22.4 L b)44.8 L
- c) 89.6 L
- d) 179 L
- e) none of these

8. Given the heats of the following reactions:

$$\begin{array}{ccc} & \underline{\Delta H^{\circ} \ (kI)} \\ \text{I.} & P_{4}(s) + 6 \text{Cl}_{2}(g) \rightarrow 4 \text{PCl}_{3}(g) & -1225.6 \\ \text{II.} & P_{4}(s) + 5 \text{O}_{2}(g) \rightarrow P_{4} \text{O}_{10}(s) & -2967.3 \\ \text{III.} & \text{PCl}_{3}(g) + \text{Cl}_{2}(g) \rightarrow \text{PCl}_{5}(g) & -84.2 \\ \text{IV.} & \text{PCl}_{3}(g) + (1/2) \text{O}_{2}(g) \rightarrow \text{Cl}_{3} \text{PO}(g) & -285.7 \\ \end{array}$$

Calculate the value of ΔH° for the reaction below:

$$P_4O_{10}(s) + 6PCl_5(g) \rightarrow 10Cl_3PO(g)$$

- a) -110.5 kJ b) -610.1 kJ c) -2682.2 kJ
- d) -7555.0 kJ
- e) None of these is within 5% of the correct answer.

9. Which of the following concerning second IE's is true?

- a) That of Al is higher than that of Mg because Mg wants to lose the second electron, so it is easier to take the second electron away.
- b) That of Al is higher than that of Mg because the electrons are taken from the same energy level, but the Al atom has one more proton.
- c) That of Al is lower than that of Mg because Mg wants to lose the second electron, thus the energy change is greater.
- d) That of Al is lower than that of Mg because the second electron taken from Al is in a p orbital, thus it is easier to take.
- e) The second ionization energies are equal for Al and Mg.

10. In the cyanide ion (CN-), the nitrogen has a formal charge of

- a) -2
- b) -1
- c)
- 0
- d) 2 e)

- a) CO_2 b)
- SeO₃
- c) XeF₄
- d) SF₄ e)

BeCl₂

12.	Which of the following molecules are nonlinear?
	NO_2^- , C_2H_2 , N_3^- , HCN, CO_2 , H_2O_2
	a) C_2H_2 , HCN b) CO_2 , N_3^- c) NO_2^- , H_2O_2 d) N_3^- , N_2^- e) all are linear
13.	Which of the following molecules or ions is not paramagnetic in its ground state?
	a) O_2 b) O_2^+ c) B_2 d) NO e) F_2

15-16. The reaction

$$2NOBr \rightarrow 2NO + Br_2$$

exhibits the rate law

Rate =
$$k[NOBr]^2 = -\frac{\Delta[NOBr]}{\Delta t}$$

number of Na⁺ ions in the unit cell is:

c) 6

where $k = 1.0 \times 10^{-5}$ M⁻¹ · s⁻¹ at 25°C. This reaction is run where the initial concentration of NOBr ([NOBr]₀) is 1.00×10^{-1} M.

face-centered cubic lattice and the Na⁺ ions are in tetrahedral holes. The

d) 8

- 15. What is one half-life for this experiment?
 - a) 5.0×10^{-1} s
- b) $6.9 \times 10^4 \text{ s}$
- c) 1.0×10^{-5} s

e) none of these

- d) $1.0 \times 10^6 \text{ s}$
- e) none of these
- 16. The [NO] after 1.00 hour has passed is
 - a) $3.5 \times 10^{-4} \,\mathrm{M}$
- b) $9.9 \times 10^{-3} \,\mathrm{M}$
- c) $9.7 \times 10^{-3} \,\mathrm{M}$

- d) $1.0 \times 10^{-3} \,\mathrm{M}$
- e) none of these
- 17. At a certain temperature K for the reaction

$$2NO_2 \rightleftharpoons N_2O_4$$

is 7.5 liters/mole. If 2.0 moles of NO_2 are placed in a 2.0-liter container and permitted to react at this temperature, calculate the concentration of N_2O_4 at equilibrium.

- a) 0.39 moles/liter
- b) 0.65 moles/liter
- c) 0.82 moles/liter

- d) 7.5 moles/liter
- e) none of these

·	a) e)	3.4 × 10 ⁻⁸ need more		× 10 -4	c) 6.9 ×	10 ⁻⁶ d) 3.8 × 10 ⁻	2	
20.	The M N	K _{sp} of AgI is al solution.	1.5 × 10 ⁻¹	6. Cal	culate the	solubilit	y in mol/l	L of AgI ir	ı a 0.30
	a)	1.7×10^{-8}	b) 0.30	c)	2.6×10^{-17}	d)	8.5×10^{1}	⁷ e) 5.0	× 10 ⁻¹⁶
21.	Н	sider the dis $_{2}(g) \rightleftharpoons 2$ would expe	H(g)	·					
	a) b) c) d) e)	will be spo will be spo will be spo will not be will never	ontaneous ontaneous ontaneous spontane	at any at hig at lov	y temperat th temperat v temperat	itures. tures.			
22.		he process C ol/K. What i						∆S° = 43.9	
	a)	-63°C	b) 210°	С	c) 5°C	d) 63°0	C e)	-5°C	
23.	In wa	hich of the fo °C?	ollowing	hange	es is the w	ork done	e by the sy	stem the l	argest
	a) an isothermal free expansion of an ideal gas from 1 to								
	b)	an isothermal expansion of an ideal gas from 1 to 10 liters against an opposing pressure of 1 atm							
	c)	 an isothermal expansion of an ideal gas from 1 to 10 liters against an opposing pressure of 5 atm 							
	d)	an isothermal reversible expansion of an ideal gas from 1 to 10 liters							
e) the work is the same for processes a-d									

18. For a certain reaction at 25.0°C, the value of K is 1.2×10^{-3} . At 50.0°C the value of K is 3.4×10^{-1} . This means that the reaction is

19. A solution of 8.0 M formic acid (HCOOH) is 0.47% ionized. What is the $K_{\rm a}$ of

b) endothermic. c) never favorable.

e) None of these (a-d)

a) exothermic.

formic acid?

d) More information is needed.

24.	A fuel cell designed to react grain alcohol with oxygen has the following net reaction:
	$C_2H_5OH(1) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(1)$
	The maximum work one mole of alcohol can yield by this process is 1320 kJ. What is the theoretical maximum voltage this cell can achieve?
	a) 0.760 V b) 1.14 V c) 2.01 V d) 2.28 V e) 13.7 V
25.	How many seconds would it take to deposit 21.40 g of Ag (atomic mass = 107.87) from a solution of AgNO ₃ using a current of 10.00 amp?
	a) 9649 s b) 4825 s c) 3828 s d) 1914 s e) none of these
26.	Which of the following is the best explanation as to why lithium is the strongest reducing agent of the alkali metals?
	a) The ionization energy of lithium is the highest of the alkali metals.b) The ionization energy of lithium is the lowest of the alkali metals.
	 The standard reduction potential of lithium is the most positive of the alkali metals.
	 The relatively high charge density of lithium compared to the other alkali metals.
	e) none of these
27.	What nitrogen-containing compound is used as rocket fuel?
	a) nitrous oxide b) ammonia c) nitric oxide
	d) hydrazine e) nitrogen dioxide
28.	According to crystal field theory, how many unpaired electrons are present in the complex ion $[Fe(H_2O)_6]^{3+}$? The water molecules are weak field ligands.
	a) 1 b) 2 c) 3 d) 4 e) 5
29.	Calculate the [H ⁺] in 1.0 M solution of Na ₂ CO ₃ (for H ₂ CO ₃ , $K_{a1} = 4.3 \times 10^{-7}$; $K_{a2} = 5.6 \times 10^{-11}$).
	a) $7.5 \times 10^{-6} \mathrm{M}$ b) $6.6 \times 10^{-4} \mathrm{M}$ c) $1.3 \times 10^{-2} \mathrm{M}$
	d) 7.5×10^{-13} M e) none of these

- 30. For the reaction $H_2O(l) \to H_2O(g)$ at 298 K, 1.0 atm, ΔH is more positive than ΔE by
 - 2.5 kJ/mol. This quantity of energy can be considered to be
 - a) the heat flow required to maintain a constant temperature.
 - b) the work done in pushing back the atmosphere.
 - c) the difference in the H-O bond energy in $H_2O(l)$ compared to $H_2O(g)$.
 - d) the value of ΔH itself.
 - e) none of these

II. 計算問答題,每題 5 分,共 10 分

1. A chemist is given a white solid that is suspected of being pure cocaine. When 1.22 g of the solid is dissolved in 15.60 g of benzene the freezing point is lowered by 1.32°C. Calculate the molar mass of the solid. The molal freezing point constant (K_f) for benzene is 5.12°C/m.

2. Draw geometric isomers for $[Cr(en)(NH_3)_2I_2]^+$, where en = ethylenediamine, and indicate which is(are) optical active.