系所別:化學暨生物化學系 目:物理分析化學

第 / 頁, 共 7 頁

科目:物理化學的部份

總分:50分 (每題2分) 請務必依照題目順序答題。

- What is the expression for the Langmuir isotherm?  $(A)\theta = KP/(1+KP)$   $(B)\theta = 1/(1+KP)$   $(C)\theta = (1/K)+(1/KP)$   $(D)\theta = 1+(1/KP)$
- What is the rate of consumption of a reactant R? (A)d[R]/dt (B)d[R] (C)-d[R]/dt

- 3. The canonical partition function of distinguishable independent molecules: (N is the total number of molecules and q is the molecular partition function) (A) $Q = q^{N}/N!$  (B) $Q = \sum_{i} e^{-\epsilon j/kT}$  (C) $Q = q^{N}/(N-1)!$  (D) $Q = q^{N}$
- The time-independent Schrödinger equation for a linear harmonic oscillator can be expressed

(A)  $-(\hbar^2/2m)(d^2\psi/dx^2) - kx\psi = E\psi$ 

(B)  $(\hbar^2/2m)(d^2\psi/dx^2) + (kx^2/2)\psi = E\psi$ 

(C)  $-(\hbar/t)(d\psi/dx) + (kx^2/2)\psi = E\psi$ 

(D)  $-(h^2/2m)(d^2\psi/dx^2) + (kx^2/2)\psi = E\psi$ 

- The relation between fractional coverage and partial pressure of a substance stands for the (A) monolayer adsorption
  - (B) adsorption isotherm
  - (C) partial molar pressure
  - (D) equilibrium constant in pressure
- Adsorption by van der Waals interaction between the adsorbate and the substrate is the definition of
  - (A) chemisorption
  - (B) cohesion
  - (C) catalytic adsorption
  - (D) physisorption
- The highest point on a potential energy surface encountered along the reaction coordinate is
  - (A) intermediate state
  - (B) saddle point
  - (C) energy barrier point
  - (D) curve-crossing point
- 8. What is the possible time duration of a femtosecond pulsed laser?

(A)1000 fs (B) $1 \times 10^4$  fs (C) $1 \times 10^{-3}$  ns (D) $1 \times 10^{-2}$  ps

Michaelis-Menten mechanism, a mechanism for enzyme-catalyzed reactions, can be written as

(A) E + S → ES → P

- (B)  $E + S \longrightarrow ES \longrightarrow P$
- $(C) E + S \Longrightarrow ES \longrightarrow P$
- (D) E + S ₹ ES ₹ P
- 10. Which of the following describes the temperature dependence of reaction rates (A) Clapeyron equation

系所別:化學暨生物化學系 科 目:物理分析化學

第 2頁,共 2頁

|     | (B) Langmuir iso<br>(C) Transition-sta<br>(D) Arrhenius equ                                                                                                                                                                                                                                                      | te theory                          |                            |                                                                                               |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| 11. | Consider the equilibrium A $\Longrightarrow$ B, what is the correct relation of $\Delta_r G$ to the chemical potentials of the species?                                                                                                                                                                          |                                    |                            |                                                                                               |  |  |  |
|     | $(A)\mu_B \times \mu_A$                                                                                                                                                                                                                                                                                          | (B)μ <sub>B</sub> / μ <sub>A</sub> | $(C)\mu_B - \mu_A$         | $(D)\mu_B + \mu_A$                                                                            |  |  |  |
| 12. |                                                                                                                                                                                                                                                                                                                  |                                    |                            | id, is present at equilibrium with its<br>indent variable(s) in phase equilibrium) of<br>(D)2 |  |  |  |
| 13. | What is the Lindemann-Hinshelwood mechanism describing the unimolecular reaction?  (A) $A + A \rightleftharpoons A + A^*$ ; $A^* \longrightarrow P$ (B) $A + h\nu \longrightarrow A^* \longrightarrow P$ (C) $A + A \longrightarrow A^* \longrightarrow P$ (D) $A + A \longrightarrow A + A^* \longrightarrow P$ |                                    |                            |                                                                                               |  |  |  |
| 14. | A dispersion of small particles (< 500 nm) of one material in another is called (A) nanoparticle (B) colloid (C) fullerene (D) glassy carbon                                                                                                                                                                     |                                    |                            |                                                                                               |  |  |  |
| 15. | The equation for the origin of the lifetime broadening in spectroscopy is (A) $\Delta t = \lambda^2/(2\Delta\lambda)$ (B) $\delta \nu = (2\nu/c)[2kT\ln 2/m]^{1/2}$ (C) $\delta E = (1/2)h\nu$ (D) $\delta E \approx h/\tau$                                                                                     |                                    |                            |                                                                                               |  |  |  |
|     | How many vibrat<br>(A)4                                                                                                                                                                                                                                                                                          | ional degrees of fr<br>(B)3        | reedom does the mo<br>(C)2 | olecule CO <sub>2</sub> have?<br>(D)9                                                         |  |  |  |
| 17. | Which of the following scientific laws gives the statement: "The pressure exerted by a mixture of gases is the sum of the partial pressures of the gases"  (A) Boyle's law  (B) Charles's law  (C) Dalton's law  (D) Avogadro's principle                                                                        |                                    |                            |                                                                                               |  |  |  |
| 18. | (For questions 18-21) A sample consisting of 1.00 mol of monatomic perfect gas, initially at $p = 1.00$ atm and $T_1 = 300$ K, is heated reversibly to 400 K at constant volume. Calculate the final pressure.                                                                                                   |                                    |                            |                                                                                               |  |  |  |
|     | ži i i i i i i i svi i i                                                                                                                                                                                                                                                                                         |                                    | (C)2                       | (D)1.33                                                                                       |  |  |  |
| 19. | (continue) Calcula<br>(A)1.25                                                                                                                                                                                                                                                                                    | ate $\Delta U$ (in kJ)<br>(B)5     | (C)-1.5                    | (D)0                                                                                          |  |  |  |
| 20. | (continue) Calcula<br>(A)-1.25                                                                                                                                                                                                                                                                                   | nte w (in kJ)<br>(B)-1.5           | (C)1.5                     | (D)0                                                                                          |  |  |  |
| 21. | (continue) Calcula                                                                                                                                                                                                                                                                                               | ate a (in kI)                      | BUT ALL OF                 | 140-49                                                                                        |  |  |  |
| 500 | (A)5                                                                                                                                                                                                                                                                                                             | (B)1.25                            | (C)-1.5                    | (D)0                                                                                          |  |  |  |

系所別:化學暨生物化學系 科 目:物理分析化學

第 3 頁,共 7 頁

| 22. | The interaction ends the London for (A) $V = C/r^4$ (B) $V = -(C/r^6)$ (C) $V = -C/r^4$ (D) $V = -C/r^{12}$                                                                                                                             | rmula,                    | luced-dipole-induced-di                         | pole (dispersion) interactions is given             |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------|-----------------------------------------------------|
| 23. | Which of the foll<br>spectrum:<br>(A) N <sub>2</sub>                                                                                                                                                                                    | owing molecule (B) HCl    | es does not have a pure                         | rotational microwave absorption (D) NH <sub>3</sub> |
| 24. | Which of the foll<br>(A) CO <sub>2</sub>                                                                                                                                                                                                | owing molecule<br>(B) HCl | es does not have an vibr<br>(C) CH <sub>4</sub> | ational infrared spectrum: (D) N <sub>2</sub>       |
| 25. | 25. The rate law for the reaction: $2A + 2B \rightarrow 3C + D$ was found to be $v = k$ unit of $k$ ?  (A) $L^2 \text{ mol}^{-2} \text{ s}^{-1}$ (B) $\text{s}^{-1}$ (C) $L^3 \text{ mol}^{-3} \text{ s}^{-1}$ (D) $\text{mol } L^{-1}$ |                           |                                                 |                                                     |

系所別: 化學暨生物化學系 科 目: 物理分析化學

第 4頁, 共 7 頁

| 化學暨生物化學所名<br>選擇題 (單選題) 每是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [전통] [[] # [[] [] # [] # [] # [] # [] # []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| <ol> <li>Sequentially indicate how many significant<br/>operation is required, please indicated the si<br/>0.09030, 1.40 x 10<sup>4</sup>, (4.318 x 3.6), Id</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gnificant figure of the og (5.405 x 10 <sup>-8</sup> ), 10 <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | result):                       |  |  |  |
| (a) 3, 3, 3, 3, 4<br>(b) 4, 3, 2, 3, 4<br>(c) 4, 3, 2, 4, 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2) 4, 3, 2, 4, 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (d) 4, 3, 2, 3, 3              |  |  |  |
| Which of the following method is the most through a set of data points?     (a) Standard addition method, (b) Internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A THE POST OF THE | for finding a line (or curve)  |  |  |  |
| (c) Matrix match method, (d) Area normali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (e) Least squares method.      |  |  |  |
| You are testing a new developed method and Reference Standard Material. Which of the (a) F-test, (b) t-test, (c) Q-test, (c) Q-test, (d) P-test, (e) Q-test, | e following tests should                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d be applied?                  |  |  |  |
| <ol> <li>A series of sequential flame emission analys of the measurement are 0.002, 0.001, 0.008, deviation is 0.0030). A standard 10 ppb let 0.0060. What is the detection limit of lead</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.006, and 0.003 (whe<br>ad solution gives an av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ere average is 0.004, standard |  |  |  |
| (a) 45 ppb, (b) 15 ppb, (c) 20 ppb,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (d) 6.7 ppb,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (e) 20 ppm                     |  |  |  |
| 5. K <sub>b</sub> for methylamine is 1.0 x 10 <sup>-4</sup> . What is t solution?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | he pH for a 0.010 M m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nethylammonium chloride        |  |  |  |
| (a) 10, (b) 5.0, (c) 4.0, (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (e) 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |  |  |  |
| For the reaction $aA + bB \implies cC + dD$ , we write the equilibrium constant, K, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |  |  |  |
| the form of $K = \frac{[C]^c[D]^d}{[A]^a[B]^b}$ , where the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | small superscript letter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s denote stoichiometry         |  |  |  |
| coefficients and each capital letter stands for a chemical species.  Which statement is <b>not</b> true about equilibrium constant?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |  |  |  |
| (a) The concentrations of solutes should be expressed as mole per liter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |  |  |  |
| (b) The concentrations of gases should be expressed in atmospheres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |  |  |  |
| (c) The equilibrium constant is temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dependent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |  |  |  |
| (d) Le Châterlier's principle predicts the effe<br>products are added.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ect on equilibrium cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | stant when reactants or        |  |  |  |

- 7. Why are microporous ODS bonded silica stationary phases generally limited to operating in the pH range 2-8?
  - (a) Basic compounds are not retained at pH above 8.0.
  - (b)Siloxane (Si-O-SiR) bonded hydrolyzes below pH 2.0.
  - (c) Silica dissolves in water with pH below 2.0.

(e) The equilibrium constant is dimensionless.

- (d) Strong surface absorption occurs at pH below 2.0.
- (e) Strong charge interaction at pH above 8.0.

系所別:化學暨生物化學系 科 目:物理分析化學

第 5 頁, 共 7 頁

8. In the isocratic elution of a reversed-phase HPLC, the polarity of each solvent is indicated in parenthesis after each solvent: water (10.2), dimethylsulfoxide (7.2), acetonitrile (5.8), methanol (5.1), dioxane (4.8), and tetrahydrofuran (4.0). Which of the following mobile phase gives the strongest elution strength?

A:30% water/70% dimethylsulfoxide, B: 50% water/50% acetonitrile, C:70% water/30% tetrahrofuran, D: 60% water/40% dioxane, and E: 50% water/50% methanol. (P.S.: the ratio is based on volume to volume)

(a) A,

(b) B.

(c) C,

(d) D,

(e) E.

9. Which of the following statement is **not** true?

- (a) An internal standard is a known amount of a compound, different from analyte, that is added to the unknown.
- (b) Standard addition is especially appropriate when the sample matrix in the unknown affects the analytical signal.
- (c) Internal standard are especially useful for analyses in which the quantity of sample analyzed varies slightly from run to run for reason are difficult to control.
- (d) Standard addition method is desirable when sample loss can occur during sample preparation steps prior to analysis.
- (e) To use an internal standard, a known mixture of standard and analyte is prepared to measure the relative response of the detector to the two species.
- 10. Which of the following statement is not true in theoretical aspect of chromatography?
  - (a) The plate height is depending on the linear flow rate.
  - (b) The column with smaller plate height gives higher column efficiency.
  - (c) The longitudinal diffusion is a more serious problem in gas chromatography than in liquid chromatography.
  - (d) The optimal flow rate is greater for a chromatographic column packed with larger particles.
  - (e) Nonlinear partition isotherms lead to non-Gaussian peaks.
- 11. Which of the following statement is **not** true in voltammetry?
  - (a) Charging current arise from charging/discharging at the electrode/solution interface.
  - (b) Limit of diffusion process can be achieved by placing the working electrode in a high concentration of high supporting electrolyte without stirring the solution.
  - (c) Differential pulse polarography measures the faradaic current when the charging current has decay to near zero.
  - (d) Square wave polarography is more sensitive than differential pulse polarography.
  - (e) Stripping method is the most sensitive polarographic technique, because the current is measured at low background charging current.
- 12. Which of the following statement is **not** true in gas chromatography?
  - (a) Open tubular columns provide greater resolution than packed columns.
  - (b) N<sub>2</sub> allows more rapid linear flow rate than H<sub>2</sub> does, without loss of column efficiency.
  - (c) It is illogical to use a thin stationary phase (0.2 μm) in a wide-bore (0.53-mm.53 mm) open tubular column.
  - (d) Pressure programming has the advantages of reducing the retention time of late-eluting peak with relative low temperature to decompose thermal sensitive compounds.
  - (e) The retention of GC is dependent on boiling point of solute and molecular interaction between stationary phase and solute.
- If the K<sub>a</sub> of barbituric acid is about 1.0 x 10<sup>-4</sup> at 25<sup>o</sup>C, at what pH is the ratio of the unprotonated to protonated for of barbituric acid 50:1.
  - (a) 3.3.
- (b) 3.7,
- (c) 4.3,
- (d) 4.7,
- (e) 5.7

系所別:化學暨生物化學系 科 目:物理分析化學

第 6頁,共2頁

- 14. Which of the following statement is not true for ions in electrolyte solutions?
  - (a) Mg<sup>2+</sup> has a smaller ionic radius than Ba<sup>2+</sup>, so Mg<sup>2+</sup> binds water molecules more strongly than Ba<sup>2+</sup>.
  - (b) The solubility of an ionic compound decrease as the ionic strength of the solution increases (at least up to ~0.5M).
  - (c) In the ionic strength range 0 0.1M, activity coefficients decrease with an increase of ionic charge.
  - (d) Hydrated radii decreases in the order Sn4+ > In3+ > Cd2+ > Rb+.
  - (e) In the ionic strength range 0 0.1M, activity coefficients decrease with decreasing hydrated radius.
- 15. Which of the following statement is **not** true about complexation titration?
  - (a) A displacement titration is necessary if the analyte react too slowly with EDTA
  - (b) The chelate effect results from those multidentate ligands form more stable metal complexes than do similar, monodentate ligands.
  - (c) A back titration is employed when the analyte precipitates in the absence of EDTA.
  - (d) For a metal indicator to be useful in EDTA titration, it must bind metal less strongly than EDTA does.
  - (e) Fraction of free EDTA in the form of Y is pH dependent, so complexation titration of metal ion with EDTA has to be buffered.
- 16. Which of the following is **not** the source of error associated with pH measurement with glass electrode?
  - (a) Overpotential,
- (b) Equilibrium time,
- (c) Junction potential,
- (d) Uncertainty in pH of standard buffer,
- (e) Sodium error at extreme pH value.
- 17. If a 0.00100 M solution in a 1.000-cm cuvet exhibits 40% T at 254 nm, what would be the transmittance for a 0.00300 M solution in a 0.500-cm cuvet (estimate the result with simple logarithm).
  - (a) 6%,
- (b) 36%,
- (c) 25%.
- (d) 48%,
- (e) 60%
- 18. Which statement is not true for atomic spectroscopy?
  - (a) Spectral interference is much severe in atomic absorption than atomic emission with plasma source.
  - (b) Temperature control is more critical for atomic emission.
  - (c) Higher temperature decreases the chemical interference.
  - (d)Increasing temperature leads to broader linewidth, due to Doppler broadening.
  - (e) Deuterium lamp can be used for background correction in atomic absorption.
- 19. Sensitivity in atomic absorption has been defined as the concentration of analyte that absorbs 1% of the light (corresponding to an absorbance of -log (0.99) = 0.0045). A sample containing 1.00 ppm Cu gave an absorbance of 0.055. Estimate the sensitivity for Cu?
  - (a) 0.018 ppm,
- (b) 0.080 ppm,
- (c) 8.2 ppm,
- (d) 0.18 ppm,
- (e) 1.8 ppm.
- 20. Which statement is **not** true for atomic absorption spectroscopy?
  - (a) Graphite furnace atomizer generally offers better sensitivity than flame atomizer does.
  - (b) A magnet is necessary for the instrument with Zeeman background correction.
  - (c) Matrix modifiers are used in flame atomic absorption to correct ionization interference.
  - (d) Linewidth of a hollow-cathode lamp is narrower than that of absorption line.
  - (e) Releasing agents are the chemical that can be added to the sample to decrease chemical interference.

系所別:化學暨生物化學系 科 目:物理分析化學

第7頁,共7頁

- 21. Which or the following statement is not true for ion chromatography (IC)?
  - (a) The elution mechanism is based on the displacement of ionic equilibrium.
  - (b) The higher the charge density, the longer the compound will be retained on the stationary phase.
  - (c) A suppressor column is employed with conductivity detector to enhance the detection sensitivity.
  - (d) The mobile phase is an aqueous solution containing electrolytes and organic modifiers.
  - (e) The stationary phase of IC is made by copolymers of polystyrene and divinylbenzene.
- 22. Which of the following statement is **not** true for a buffer solution?
  - (a) The buffer capacity increases as a solution become very acidic or very basic.
  - (b) The pH of a buffer nearly independent of concentration.
  - (c) The buffer capacity increases as the concentration of buffer increases.
  - (d) The maximum buffer capacity is at  $pH = pK_a \pm 1$ .
  - (e) The pH of a buffer solution does not change very much when a limited amount of strong acid or base is added
- 23. Which of the following statement is **not** true for luminescence?
  - (a) Molecules in π → π\* excited states are more likely to undergoes inter-system crossing than those in n → π\* states.
  - (b) Molecular fluorescence competes with two radiationless processes: internal conversion and inter-system crossing.
  - (c) Transitions from T to S0 are forbidden because they involve a change in the electron spin of the molecule.
  - (d) Xenon arc is more satisfactory as a source for fluorescence work than tungsten filament lamp.
  - (e) Fluorescence is quenched when a molecule in an excited electronic state is deactivated without emission of a photon.
- Radiation of wavelength 400 nm is less likely to cause photodecompositon of an organic molecule that radiation of wavelength 300 nm because
  - (a) its photon energy is lower.
  - (b) it is visible radiation.
  - (c) its intensity is higher.
  - (d) it is more ready absorbed
  - (e) it is more likely to excite the organic molecule to excited state.
- 25. Which of the following HPLC detectors can not be used in gradient elution?
  - (a) Ultraviolet.
- (b) Mass spectrometry,
- (c) Fluorescence,
- (d) Evaporative light-scattering,
- (e) Refractive index.

Log 2 = 0.301, Log 3 = 0.477, Log 5 = 0.699, Log 7 = 0.845. Log (a b)= Log a + Log b, Log (a/b)= Log a - Log b, Log (a<sup>b</sup>) = b Log a, Log  $10^a$  = a