試 題

[第4節]

科目名稱	有機無機化學
系所組別	化學暨生物化學系

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、書記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

科目名稱:有機無機化學

本科目共 4 頁 第 1 頁

系所組別:化學暨生物化學系

科目: 有機化學,總分50分

1. Provide the missing reagents and structural formulas for the major organic products (A-T) from each of the following syntheses. More than one reaction may be necessary in some cases. (2 pts each, 40 pts)

(1)
$$\frac{OH}{K_2CO_3}$$
 A $\frac{Li}{NH_3, EtOH}$ B $\frac{C}{C}$

(2)
$$\begin{array}{c|c} \hline 1. \ Br_2, \ FeBr_3 \\ \hline 2. \ OH^-, \ H_2O \end{array} \qquad D \qquad \begin{array}{c|c} \hline E \\ \hline N_2^+ \\ \hline \end{array} \qquad \begin{array}{c|c} F \\ \hline Br \\ \hline \end{array} \qquad \begin{array}{c|c} F \\ \hline Br \\ \hline \end{array}$$

(3)
$$PCI_5$$
 G $NaNH_2$ H I Br_2 Br Br

(4)
$$H^+ \longrightarrow K \xrightarrow{\text{peroxide, } \Delta} L \xrightarrow{\text{t-BuOK}} M$$

(5) OH
$$\stackrel{\text{N}}{\longrightarrow}$$
 CHO $\frac{1. \text{ Me}_2\text{NH}}{2. \text{ NaBH}_3\text{CN}}$ O $\frac{1. \text{ H}_2\text{O}_2}{2. \Delta}$ P

(6)
$$CO_2Me$$
 R OHC_1 CHO CO_2Me $MeO_2\tilde{C}$

科目名稱: 有機無機化學

本科目共 4 頁 第 2 頁

系所組別:化學暨生物化學系

- 2. Which reagent in each pair listed here would be the more reactive nucleophile in the indicate solvent. (1 pt each, 3 pts)
 - (1) F^- or Γ^- (in MeOH)
 - (2) Cl^- or Br^- (in DMF)
 - (3) HO^- or $CH_3CO_2^-$ (in HMPA)
- 3. How many chiral centers are there in the following compounds? (1 pt each, 4 pts)

4. What is the structure of the compound in the following ¹H NMR spectral data with the molecular formula C₄H₈O₂? (3 pts)

 ^{1}H NMR (CDCl₃, 300 MHz): δ 3.69 (s, 8H).

科目名稱:有機無機化學

本科目共 4 頁 第 3 頁

系所組別:化學暨生物化學系

科目:無機化學

共 19 題,1-13 題每題 2 分,14 及 15 題每題 3 分,16 及 17 題每題 4 分,18 及 19 題每題 5 分,合計 50 分。

- 1. What are the values of quantum numbers n and l for a 5d electron?
- 2. Which one of the following atoms, Na, Mg, Al, has the highest ionization energy?
- 3. Which one of the molecules, OCl₂, O(CH₃)₂, and O(SiH₃)₂ has the largest bond angle at the O atom?
- 4. For NO, NO, NO, (A) which one has the weakest bond, (B) which one has the most unpaired electrons, on the basis of molecular orbitals?
- 5. List the following acids in order of their acid strength when reacting with NH₃: BMe₃, B(C₆H₂Me₃)₃, BF₃
- 6. Using appropriate chemical equation explain that the conductivity of BrF₃ is increased by adding KF.
- 7. Give an example of p-type semiconductor?
- 8. Determine the formula of the silicate shown below.

- 9. List all the possible first-row transition metals which form complexes [MCl₆]⁴⁻ having two unpaired Electrons.
- 10. Which one of the following ions, CrO_4^{4-} , MnO_4^{3-} , FeO_4^{2-} , has the largest value of Δ_t ?
- 11. Predict the product of the mixing equimolar [Pt(CO)Cl₃] and NH₃.
- 12. On the basis of the 18-electron rule, determine the second-row transition metal for [M(PE₃)₂(NO)₂]⁺ (contains linear M—N—O).
- 13. The tungsten alkylidyne complex W(≡CCMe₃)(OCMe₃)₃ has been used to catalyze the ring-closing metathesis reaction for alkynes. Predict the structure of the cyclic product for metathesis of MeC≡C(CH₂)₈COO(CH₂)₉C≡CMe.
- 14. (A) Give the Lewis structure, (B) predict the geometry on the basis of VSEPR and (C) determine the point group of TeF₄².
- 15. Sketch all the isomers of [Pt(en)₂Cl₂]²⁺ (en: H₂NCH₂CH₂NH₂).

科目名稱: 有機無機化學

本科目共 4 頁 第 4 頁

系所組別:化學暨生物化學系

16. When a toluene solution containing the carbene complex I shown below and excess triphenylphosphine (PPh₃) is heated to reflux, compound II is formed first, and then compound III. The IR and ¹H NMR data for II and III are as follows:

	IR ν (CO) (cm ⁻¹)	1 H NMR δ (ppm)
11	2038, 1958, 1906	7.62 ~ 7.41 muliplets (15), 4.19 multiplet (4)
III	1944, 1860	7.70 ~ 7.32 multiplets (15), 3.39 singlet (2)

Propose the structures of II and III.

I:
$$O \subset Br \cap O$$

$$OC - Re = C \cap O$$

$$OC \cap C \cap O$$

- 17. Copper, silver and gold crystalize in face-centered cubic (fcc) structure. (A) Sketch the fcc unit cell. (B) Calculate the packing efficiency of the fcc structure.
- 18. The Raman spectrum of AsP₃ shown below, exhibits four absorptions.

(A) Sketch the structure of AsP₃. (B) Is the Raman spectrum consistent with the proposed structure? Support your answer by determining the number of Raman-active stretching modes for AsP₃.

Character table

$C_{3\nu}$	E	$2C_{3}$	$3\sigma_{\nu}$		
A_1	1	1	1	z	$x^2 + y^2, z^2$
A_2	1	1	-1	R_z	
E	2	-1	0	$(x, y), (R_x, R_y)$	$(x^2 - y^2, xy), (xz, yz)$

19. The nitrogen atom is an example of a valence p^3 configuration. There are five levels associated with this configuration, with the energies shown below.

Energy (cm ⁻¹)	28839.31	28838.92	19233.18	19224.46	0
Liloigy (Oil)	<u> </u>				

Using Russell-Saunders term, assign these five energy levels.