普通化學單選題 25 題,每題 4 分,共 100 分。答錯不倒扣。

How many protons, neutrons, and electrons does the atom ³¹P have?

	A) 15 protons, 15 neutrons, 31 electrons B) 16 protons, 16 neutrons, 15 electrons
	C) 15 protons, 15 neutrons, 15 electrons D) 16 protons, 15 neutrons, 16 electrons
	E) 15 protons, 16 neutrons, 15 electrons
2.	The average mass of a boron atom is 10.81. If you were able to isolate a single boron atom, what is the chance that you would randomly get an atom with mass 10.81? A) 0% B) 0.81% C) about 11% D) 10.81% E) greater than 50%
3.	What is the empirical formula (實驗式) of a hydrocarbon (a compound that consists of only carbon and hydrogen) that contains 81.7% carbon by mass?
	A) C_2H_6 B) C_3H_8 C) C_4H_{10} D) C_5H_{12} E) none of these
4.	Sulfuric acid may be produced by the following process: $4\text{FeS}_2 + 11\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$ $2\text{SO}_2 + \text{O}_2 \rightarrow 2\text{SO}_3$ $3\text{SO}_3 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4$ How many moles of $3\text{H}_2\text{SO}_4$ will be produced form 5.00 mol of 3FeS_2 ? A) 6.11 mol B) 5.00 mol C) 10.0 mol D) 12.2 mol E) 20.0 mol
	A) 6.11 mol B) 5.00 mol C) 10.0 mol D) 12.2 mol E) 20.0 mol
5.	In which state of the following compounds does nitrogen have the most positive oxidation state? A) HNO ₃ B) NH ₄ Cl C) N ₂ O D) NO ₂ E) NaNO ₂
6.	A sample of nitrogen gas has a volume of 160.0 mL at STP (標準狀態). What volume does the gas occupy if the absolute temperature and pressure are each quadrupled (四倍)? A) 640.0 mL B) 40.00 mL C) 160.0 mL D) 400.0 mL E) 89.60 L
7.	Into a 3.90-liter container at 23°C are placed 1.18 mol of O_2 gas and 4.02 mol of solid C (graphite). If the carbon and oxygen react completely to form $CO(g)$, what will be the final pressure in the container at 23°C? (Gas constant $R = 0.08206 \text{ L} \cdot \text{atm/K} \cdot \text{mol}$)
	A) 14.7 atm B)25.0 atm C) 0.571 atm D) 32.4 atm E) 7.35 atm

	III. the concentration of the reactants.
	IV. the concentration of the products.
	A) I and II only B) II and III only C) III and IV only D) three of these E) none of these
9.	The following reaction is investigated (assume an ideal gas mixture). $2N_2O(g) + N_2H_4(g) \implies 3N_2(g) + 2H_2O(g)$ Initially there are 0.08 mol of N_2O and 0.29 mol of N_2H_4 , in a 20.0-L container. If there is 0.050 mol of N_2O at equilibrium, how many moles of N_2 are present at equilibrium? A) 0.12 B) 0.053 C) 0.045 D) 0.15 E) 0.030
10.	 When the substances in the equation below are at equilibrium at pressure P and temperature T, how can the equilibrium be shifted to favor the products? CuO(s) + H₂(g) Cu(s) + H₂O(g) Change in enthalpy ΔH = -2.0 kJ. A) Decrease the temperature. B) Add a catalyst. C) Increase the pressure by adding an inert gas such as nitrogen. D) Increase the pressure by means of a moving piston at constant temperature. E) Allow some gas to escape at constant pressure and temperature.
11.	Calculate the pH of a 0.10 M solution of HOCl, $K_a = 3.5 \times 10^{-8}$. A) 4.23 B) 8.46 C) 3.73 D) 1.00 E) 3.23
12.	Calculate [H ⁺] in a 1.0 M solution of Na ₂ CO ₃ . (for H ₂ CO ₃ , $K_{a1} = 4.3 \times 10^{-7}$ and $K_{a2} = 5.6 \times 10^{-11}$) A) $7.5 \times 10^{-6} M$ B) $6.6 \times 10^{-4} M$ C) $1.3 \times 10^{-2} M$ D) $7.5 \times 10^{-13} M$ E) none of these
13	The solubility of Fe(OH) ₂ in water is 7.9×10^{-6} mol/L at 25° C. What is K_{sp} for Fe(OH) ₂ at 25° C? A) 4.9×10^{-16} B) 2.0×10^{-15} C) 6.2×10^{-11} D) 2.5×10^{-10} E) none of these

The value of the equilibrium constant (平衡常數) K is dependent on:

the temperature of the system.

II. the nature of the reactants and products.

8.

14.	Co	nsider the following numbered processes:
	1.	$A \rightarrow 2B$
	2.	$B \rightarrow C + D$

 ΔH for the process A \rightarrow 2C + E is

A)
$$\Delta H_1 + \Delta H_2 + \Delta H_3$$
 B) $\Delta H_1 + \Delta H_2$ C) $\Delta H_1 + \Delta H_2 - \Delta H_3$ D) $\Delta H_1 + 2\Delta H_2 - \Delta H_3$ E) $\Delta H_1 + 2\Delta H_2 + \Delta H_3$

15. Consider the dissociation reaction of the acid HF.

$$HF(aq) \longrightarrow H^{+}(aq) + F^{-}(aq)$$

Why is entropy ΔS negative?

3. $E \rightarrow 2D$

- A) Each HF molecule produces two ions when it dissociates.
- B) The ions are hydrated.
- C) The reaction is expected to be exothermic ($\dot{\alpha}$ $\dot{\alpha}$), and ΔS thus should be negative.
- D) The reaction is expected to be endothermic (吸熱), and thus ΔS should be negative.
- E) none of these
- 16. How many electrons are transferred in the following reaction?

$$2Cr_2O_7^{2-} + 14H^+ + 6Cl^- \rightarrow 2Cr^{3+} + 3Cl_2 + 7H_2O$$

- A) 2 B) 4 C) 6 D) 8 E) none of these
- 17. When the equation for the following reaction in basic solution is balanced, what is the sum of the coefficients?

$$MnO_4^-(aq) + CN^-(aq) \rightarrow MnO_2(s) + CNO^-(aq)$$

A) 13 B) 8 C) 10 D) 20 E) 11

- 18. Gold (atomic mass = 197 g/mol) is plated from a solution of chlorauric acid, HAuCl₄; it deposits on the cathode. Calculate the time it takes to deposit 0.65 g of gold, passing a current of 0.14 amperes. (1 faraday = 96,485 coulombs)
 - A) 0.63 h B) 1.9 h C) 2.5 h D) 0.0025 days E) 1.3 h
- 19. In Bohr's atomic theory, when an electron moves from one energy level to another energy level more distant from the nucleus,
 - A) energy is emitted.B) energy is absorbed.C) no change in energy occurs.D) light is emitted.E) none of these

A) N ₂ B) CO C) NO D) OH ⁻ E) none of these 21. The following initial rate data were found for the reaction 2MnO ₄ ⁻ + 5H ₂ C ₂ O ₄ + 6H ⁺ → 2Mn ²⁺ + 10CO ₂ + 8H ₂ O [MnO ₄] ₀ [H ₂ C ₂ O ₄] ₀ [H ⁺] ₀ Initial Rate (M/s) 1 × 10 ⁻³ 1 × 10 ⁻³ 1.0 2× 10 ⁻⁴ 2 × 10 ⁻³ 1 × 10 ⁻³ 1.0 8× 10 ⁻⁴ 2 × 10 ⁻³ 2 × 10 ⁻³ 1.0 1.6 × 10 ⁻³ 2 × 10 ⁻³ 2 × 10 ⁻³ 2.0 1.6 × 10 ⁻³ Which of the following is the correct rate law? A) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] ³ [H ⁺] ⁶ B) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄][H ⁺] C) Rate = k[MnO ₄][H ₂ C ₂ O ₄][H ⁺] D) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] E) Rate = k[MnO ₄][H ₂ C ₂ O ₄] ² 22. Sodium oxide (Na ₂ O) crystallizes in a structure in which the O ²⁻ ions are in a face-centered cubic lattice and the Na ⁺ ions are in tetrahedral holes. What is the number of Na ⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H ₂ O, the resulting solution freezes at −0.190°C. K _f for H ₂ O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same.	20.	wn	ıcıı spec	nes na	s an unpan	ea en	ectron	. (
2MnO ₄ ⁻ + 5H ₂ C ₂ O ₄ + 6H ⁺ → 2Mn ²⁺ + 10CO ₂ + 8H ₂ O [MnO ₄ ⁻] ₀ [H ₂ C ₂ O ₄] ₀ [H ⁺] ₀ Initial Rate (M/s) 1 × 10 ⁻³ 1 × 10 ⁻³ 1.0 2 × 10 ⁻⁴ 2 × 10 ⁻³ 1 × 10 ⁻³ 1.0 8 × 10 ⁻⁴ 2 × 10 ⁻³ 2 × 10 ⁻³ 1.0 1.6 × 10 ⁻³ 2 × 10 ⁻³ 2 × 10 ⁻³ 2.0 1.6 × 10 ⁻³ Which of the following is the correct rate law? A) Rate = k[MnO ₄ ⁻] ² [H ₂ C ₂ O ₄] ³ [H ⁺] ⁶ B) Rate = k[MnO ₄ ⁻] ² [H ₂ C ₂ O ₄][H ⁺] C) Rate = k[MnO ₄ ⁻][H ₂ C ₂ O ₄][H ⁺] D) Rate = k[MnO ₄ ⁻] ² [H ₂ C ₂ O ₄] E) Rate = k[MnO ₄ ⁻][H ₂ C ₂ O ₄] ² 22. Sodium oxide (Na ₂ O) crystallizes in a structure in which the O ² ions are in a face-centered cubic lattice and the Na ⁺ ions are in tetrahedral holes. What is the number of Na ⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H ₂ O, the resulting solution freezes at −0.190°C. K _f for H ₂ O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same.		A)	N_2	B)	CO	C)	NO	D)	OH ⁻	E)	none of these		
[MnO ₄] ₀ [H ₂ C ₂ O ₄] ₀ [H ⁺] ₀ Initial Rate (<i>M</i> /s) 1 × 10 ⁻³ 1 × 10 ⁻³ 1.0 2 × 10 ⁻⁴ 2 × 10 ⁻³ 1 × 10 ⁻³ 1.0 8 × 10 ⁻⁴ 2 × 10 ⁻³ 2 × 10 ⁻³ 1.0 1.6 × 10 ⁻³ 2 × 10 ⁻³ 2 × 10 ⁻³ 2.0 1.6 × 10 ⁻³ Which of the following is the correct rate law? A) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] ⁵ [H ⁺] ⁶ B) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄][H ⁺] C) Rate = k[MnO ₄][H ₂ C ₂ O ₄][H ⁺] D) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] E) Rate = k[MnO ₄][H ₂ C ₂ O ₄] ² 22. Sodium oxide (Na ₂ O) crystallizes in a structure in which the O ² ions are in a face-centered cubic lattice and the Na ⁺ ions are in tetrahedral holes. What is the number of Na ⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H ₂ O, the resulting solution freezes at -0.190°C. K _f for H ₂ O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same.	21.	The	follow	ing ini	tial rate da	ta we	re fou	nd for th	e reactio	n			
1 × 10 ⁻³ 1 × 10 ⁻³ 1.0 2 × 10 ⁻⁴ 2 × 10 ⁻³ 1 × 10 ⁻³ 1.0 8 × 10 ⁻⁴ 2 × 10 ⁻³ 2 × 10 ⁻³ 1.0 1.6 × 10 ⁻³ 2 × 10 ⁻³ 2 × 10 ⁻³ 2.0 1.6 × 10 ⁻³ Which of the following is the correct rate law? A) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] ⁵ [H ⁺] ⁶ B) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄][H ⁺] C) Rate = k[MnO ₄][H ₂ C ₂ O ₄][H ⁺] D) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] E) Rate = k[MnO ₄][H ₂ C ₂ O ₄] ² 22. Sodium oxide (Na ₂ O) crystallizes in a structure in which the O ²⁻ ions are in a face-centered cubic lattice and the Na ⁺ ions are in tetrahedral holes. What is the number of Na ⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H ₂ O, the resulting solution freezes at -0.190°C. K _f for H ₂ O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same.		2Mı	nO ₄ -+	5H ₂ C ₂	O ₄ + 6H ⁺ -	→ 2M	[n ²⁺ +	10CO ₂ -	+ 8H ₂ O				
2×10 ⁻³ 1×10 ⁻³ 1.0 8×10 ⁻⁴ 2×10 ⁻³ 2×10 ⁻³ 1.0 1.6×10 ⁻³ 2×10 ⁻³ 2×10 ⁻³ 2.0 1.6×10 ⁻³ Which of the following is the correct rate law? A) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] ⁵ [H ⁺] ⁶ B) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄][H ⁺] C) Rate = k[MnO ₄][H ₂ C ₂ O ₄][H ⁺] D) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] E) Rate = k[MnO ₄][H ₂ C ₂ O ₄] ² 22. Sodium oxide (Na ₂ O) crystallizes in a structure in which the O ²⁻ ions are in a face-centered cubic lattice and the Na ⁺ ions are in tetrahedral holes. What is the number of Na ⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H ₂ O, the resulting solution freezes at -0.190°C. K _f for H ₂ O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same.		[]	MnO ₄ ¯]	0	$[H_2C_2O_4]_0$		$[H^+]_0$	Initi	al Rate (.	M/s)			
2×10 ⁻³ 1×10 ⁻³ 1.0 8×10 ⁻⁴ 2×10 ⁻³ 2×10 ⁻³ 1.0 1.6×10 ⁻³ 2×10 ⁻³ 2×10 ⁻³ 2.0 1.6×10 ⁻³ Which of the following is the correct rate law? A) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] ⁵ [H ⁺] ⁶ B) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄][H ⁺] C) Rate = k[MnO ₄][H ₂ C ₂ O ₄][H ⁺] D) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] E) Rate = k[MnO ₄][H ₂ C ₂ O ₄] ² 22. Sodium oxide (Na ₂ O) crystallizes in a structure in which the O ²⁻ ions are in a face-centered cubic lattice and the Na ⁺ ions are in tetrahedral holes. What is the number of Na ⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H ₂ O, the resulting solution freezes at -0.190°C. K _f for H ₂ O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same.		1	$\times 10^{-3}$		1×10^{-3}		1.0		2×1	0^{-4}			
2×10 ⁻³ 2×10 ⁻³ 2.0 1.6×10 ⁻³ Which of the following is the correct rate law? A) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] ⁵ [H ⁺] ⁶ B) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄][H ⁺] C) Rate = k[MnO ₄][H ₂ C ₂ O ₄][H ⁺] D) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] E) Rate = k[MnO ₄][H ₂ C ₂ O ₄] ² 22. Sodium oxide (Na ₂ O) crystallizes in a structure in which the O ²⁻ ions are in a face-centered cubic lattice and the Na ⁺ ions are in tetrahedral holes. What is the number of Na ⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H ₂ O, the resulting solution freezes at -0.190°C. K _f for H ₂ O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same.									8×1	0^{-4}			
2×10 ⁻³ 2×10 ⁻³ 2.0 1.6×10 ⁻³ Which of the following is the correct rate law? A) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] ⁵ [H ⁺] ⁶ B) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄][H ⁺] C) Rate = k[MnO ₄][H ₂ C ₂ O ₄][H ⁺] D) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] E) Rate = k[MnO ₄][H ₂ C ₂ O ₄] ² 22. Sodium oxide (Na ₂ O) crystallizes in a structure in which the O ²⁻ ions are in a face-centered cubic lattice and the Na ⁺ ions are in tetrahedral holes. What is the number of Na ⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H ₂ O, the resulting solution freezes at -0.190°C. K _f for H ₂ O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same.													
Which of the following is the correct rate law? A) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] ⁵ [H ⁺] ⁶ B) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄][H ⁺] C) Rate = k[MnO ₄][H ₂ C ₂ O ₄][H ⁺] D) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] E) Rate = k[MnO ₄][H ₂ C ₂ O ₄] ² 22. Sodium oxide (Na ₂ O) crystallizes in a structure in which the O ²⁻ ions are in a face-centered cubic lattice and the Na ⁺ ions are in tetrahedral holes. What is the number of Na ⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H ₂ O, the resulting solution freezes at -0.190°C. K _f for H ₂ O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same.									1.6×1	0^{-3}			
A) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] ⁵ [H ⁺] ⁶ B) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄][H ⁺] C) Rate = k[MnO ₄][H ₂ C ₂ O ₄][H ⁺] D) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] E) Rate = k[MnO ₄][H ₂ C ₂ O ₄] ² 22. Sodium oxide (Na ₂ O) crystallizes in a structure in which the O ²⁻ ions are in a face-centered cubic lattice and the Na ⁺ ions are in tetrahedral holes. What is the number of Na ⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H ₂ O, the resulting solution freezes at -0.190°C. K _f for H ₂ O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same.							rect ra	ate law?					
C) Rate = k[MnO ₄][H ₂ C ₂ O ₄][H ⁺] D) Rate = k[MnO ₄] ² [H ₂ C ₂ O ₄] E) Rate = k[MnO ₄][H ₂ C ₂ O ₄] ² 22. Sodium oxide (Na ₂ O) crystallizes in a structure in which the O ²⁻ ions are in a face-centered cubic lattice and the Na ⁺ ions are in tetrahedral holes. What is the number of Na ⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H ₂ O, the resulting solution freezes at -0.190°C. K _f for H ₂ O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same.					_				Rate	= <i>k</i> [Mn($O_4^{-1}^2[H_2C_2O_4][H_2C_2O_4]$	(*)	
 E) Rate = k[MnO₄][H₂C₂O₄]² 22. Sodium oxide (Na₂O) crystallizes in a structure in which the O²⁻ ions are in a face-centered cubic lattice and the Na⁺ ions are in tetrahedral holes. What is the number of Na⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H₂O, the resulting solution freezes at -0.190°C. K_f for H₂O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same. 25. How many structural isomers (異構物) does pentane C₅H₁₂ have? 		,							,	-	-	-	
 22. Sodium oxide (Na₂O) crystallizes in a structure in which the O²⁻ ions are in a face-centered cubic lattice and the Na⁺ ions are in tetrahedral holes. What is the number of Na⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H₂O, the resulting solution freezes at -0.190°C. K_f for H₂O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same. 25. How many structural isomers (異構物) does pentane C₅H₁₂ have? 		,		_			_		,		, 11 1		
cubic lattice and the Na ⁺ ions are in tetrahedral holes. What is the number of Na ⁺ ions in the unit cell? A) 2 B) 4 C) 6 D) 8 E)none of these 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H ₂ O, the resulting solution freezes at -0.190°C. K _f for H ₂ O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same.				Ľ	. 16 2								
 23. When a 1.50-g sample of glutamic acid is dissolved in 100.0 g of H₂O, the resulting solution freezes at -0.190°C. K_f for H₂O is 1.86°C/m. The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same. 25. How many structural isomers (異構物) does pentane C₅H₁₂ have? 	22.	cu	bic latt	ice and									
freezes at -0.190°C. K_f for H_2O is 1.86°C/ m . The molar mass of glutamic acid is A) 14.7 g/mol B) 1.50 g/mol C) 189 g/mol D) 28.0 g/mol E) 147 g/m 24. Choose the species with the highest boiling point. A) HF B) HCl C) HBr D) HI E) All are the same.		A)	2	B) 4	C) 6		D)	8	E)none	of these	е		
A) HF B) HCl C) HBr D) HI E) All are the same. 25. How many structural isomers (異構物) does pentane C ₅ H ₁₂ have?	23.	fr	eezes a	t –0.19	00°C. K _f	for H	O is 1	1.86°C/ <i>n</i>	i. The	molar n	nass of glutamic	acid i	S
25. How many structural isomers (異構物) does pentane C ₅ H ₁₂ have?	24	. Ch	oose th	e spec	ies with th	e higl	nest b	oiling po	int.				
		A)	HF]	B) HCl	C) HE	Br]	O) HI	E)) All are the sa	ne.	
	25									C ₅ H ₁₂ ha	ave?		

VIIIA SA Periora A.003	20.180 20.180	A Arron 329 948	.	24.80 84.80	γ× Φ	Xenon 131.29	₂ £ ½	222.018 118	Ununactium	2 garage	engium 623
17 VIIA 7A	9 Huorme 18.998	公司 (10 mg 20 mg	^ж ф	79.904		lodine 126.904	85 Actuating	209.987	ULS	71 b Lu 104 174.967	O mor
16 VIA 6A	O	در المالية 22.05%	န္ကလ္ခ	78,09	o H	Tellurium 127.6	² C minoing	[208.982] 116	Livermonum [298]	70 TO YOUR THERPHONE 173.04	e
15 VA SA	Mitrogen 74.007	7.5 Phosphorus 30.574	As As	Arsenic 74,522	် ဌာ	Antimony 121.750	^器 四 ⁸	208,980	Underpentium unknown	69 L T T T T Thulum 168.932	
54 IVA 44	O 2011	28.085	ge Ge	72.61	္ကင္တ	TR.71	្តក្ន	207.2	Негомил [289]	68 FL Franker 157.25 157.25 157.25 157.25 157.25	2 4
۲۱ ۱۱ ۱۲ ۱۲ ۱۲ ۱۲ ۱۲ ۱۲ ۱۲ ۱۲ ۱۲ ۱۲ ۱۲ ۱	ت م م	13 Al Alumimum 26.952	۳ 0	Gallium 69,732	<u>_</u>	indium 114.818	<u>_</u>	204.383	ULT Unustrium unknown	F7 HOME HOME 164.930	
			j	1			15 - 15.		Cn Sopernicium 1277	66 m Dyaposium 25 16250	·
Elements		<u> </u>	్ట్రెర్తె	Copper 53.546	, Ad	Silver 107.868	Å L	196.967		65 1 Tb Ium Tenbium 5 158.925	
of the				1	. Taken	_ : [1. /	- -	Darmstadtium R [269]	1 Gd Gd (ST.25	T
		1							NAT Metinerium De [268]	និ កា គ្នីខ្	Marie a Cara
i E			1. 1	1 1-1			Production of		S L E E	62 N Sm 150.36	r a
Periodic Table							la de la constante de la const	· A	교	Pm Promettium 144,913	
kalar				ر الراب ا		Ē			. * *** * : * : * i E	DN 14224	
		V S	>	anadium C 50.942	.c Z	Viobium Ma S2,906	 	20.948		59 Presector	2 G 18 G
		4 \ 8 \ 8 \ 8 \	7	Ganium v 47.88	, Y	irconium 91.224	Ľ Ľ	178.49	74. ************************************	58 Cerum 140 115	
		HIB SB	Sc	candium 44.956	}	Yttrium 2 88.906	,7 17-1	The state of the s	71 E	57 57 Lamban 138,906	Actinium
~ ¥ 8	Beydian 8:012	Z 4.305	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Calcium 5 40,078	χ, 	trontium 87.62	a B	27.327	€ 625 25 25 25 25 25 25 25 25 25 25 25 25 2	Larthanide	Actinide Series
11.4 1.1.4 1.008	š ;:	₽ .	×		ਲ		រដ្ឋ		8		

