國立中正大學102學年度碩士班招生考試試題

系所別:化學暨生物化學系

第2節

第 / 頁,共 3 頁

科目:物理分析化學

一、第一部份

- 1. Identify which of the following functions are eigenfunctions of the operator d/dx? (4%)
 - (a) e^{ikx}
 - (b) $\cos kx$
 - (c) kx
 - (d) e^{-ax^2}
- 2. Which spectrum has the lowest energy gap? (4%)
 - (a) UV
 - (b) IR
 - (c) Microwave
- 3. For calculating enthalpy of formation in a chemical reaction, one can use Hess's law and $\Delta H = \Delta q$ under what kind of condition? (4%)
 - (a) Isotherm
 - (b) Isobars
 - (c) Isochore
- 4. What is the heat capacity of the following linear ideal gas molecule? (R=gas constant) (4%)

- (a) $C_{v,m} = R/2$
- (b) $C_{v,m} = 3R/2$
- (c) $C_{v,m} = 5R/2$
- (d) $C_{v,m} = 3R$
- (e) $C_{v,m} = 5R$
- 5. The figure shown below shows 1-D diffusion (concentration versus position). Which region show the concentration is increasing with the time? $\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}$ (4%)

國立中正大學102學年度碩士班招生考試試題

系所別:化學暨生物化學系 科目:物理分析化學

第2節

第2頁,共3頁

- (a)(1)
- (b)(2)
- (c)(3)
- (d) None of above
- 6. The ground state wavefunction of a hydrogen atom is

$$\psi = \left(\frac{1}{\pi a_0^3}\right) e^{-r/a_0}$$

where a_0 =53 pm (the Bohr radius). Calculate the probability that the electron will be found somewhere within a small sphere of radius 1.0 pm centred on the nucleus. (10%)

7. The reaction mechanism for the decomposition of A₂

$$A_2 \rightleftharpoons A+A \text{ (fast)}$$

$$A + B \rightleftharpoons P \text{ (slow)}$$

Involves an intermediate A. Deduce the rate law for the reaction by assuming a pre-equilibrium. (10%)

- 8. A sample consisting of 3.00 mol of diatomic perfect gas molecules at 200 K is compressed reversibly and adiabatically until its temperature reaxhes 250 K. Given that $C_{v,m}$ =27.5 J K⁻¹ mol⁻¹, caculate
 - (1) Internal energy ΔU (5%)
 - (2) Entropy ΔS (5%)

系所別:化學暨生物化學系

第2節

第3頁,共3頁

科目:物理分析化學

二等二部份

- 1. Please estimate the pH value of NaHCO₃ solution (1.0 M, 10 mL) diluted with the following solutions of 100 mL. [答案取至小數點以下一位即可] [10 points]
- (1) NaOH solution (0.05 M)
- (2) NaCl solution (0.05 M)

[Hint: The dissociation constants of carbonic acid are 5×10^{-7} M and 5×10^{-11} M, respectively.]

- 2. When $C = A^2 B^2$, please use $\triangle A$ and $\triangle B$, which are the uncertainty values of A and B, to express the error propagation function of $\triangle C$. [8 points] [Hint: $(\triangle Z)^2 = (\triangle X)^2 + (\triangle Y)^2$ when $Z = X \pm Y$; $(\triangle Z/Z)^2 = (\triangle X/X)^2 + (\triangle Y/Y)^2$ when Z = XY.]
- 3. Please explain why using cyanogen (C₂N₂) flame is able to obtain better signal sensitivity than using acetylene (C₂H₂) flame when carrying out atomic emission spectroscopic analysis? [8 points]

[Hint: The electron population in an excited follows Boltzman distribution. The flame temperatures of acetylene flame and cyanogen flame are 2500 k and 4800 k, respectively.]

- 4. Two sample peaks of the same half-height width appear in retention times 10 minute and 11 minute, respectively in one HPLC chromatogram.
- (1) What is the largest half-height width of each sample peak to remain baseline separation? [5 points]
- (2) When the solvent peak appears in 2 minute, what is the capacity factor of the sample peak in 10 minute? [5 points]
- 5. Please explain why diode laser emitting at 445 nm is NOT an adequate light source to acquire Raman scattering spectrum, but a preferable light source to measure Rayleigh scattering intensity of colloid particles. [5 points]
- 6. Briefly explain the following terms:
- (1) calomel electrode; (2) polarography; (3) Van Deetmer equation [9 points]