普通化學

選擇題,共40題,每題2.5分,共100分,答錯不倒扣。

- 1. Which of the following pairs of compounds can be used to illustrate the law of multiple proportions?
- (a) NH₄ and NH₄Cl, (b) ZnO₂ and ZnCl₂, (c) H₂O and HCl, (d) NO and NO₂, (e) CH₄ and CO₂.
- 2. A species with 12 protons and 10 electrons is
- (a) Ne^{2+} , (b) Ti^{2+} , (c) Mg^{2+} , (d) Mg, (e) Ne^{2-} .
- 3. The correct name for LiCl is
- (a) lithium monochloride, (b) lithium(I) chloride, (c) monolithium chloride, (d) lithium chloride,
- (e) monolithium monochloride
- 4. Nitric acid contains what percent hydrogen by mass?
- (a) 20.0, (b) 10.0, (c) 4.50, (d) 3.45, (e) 1.60%.
- 5. You take an aspirin tablet (a compound consisting solely of carbon, hydrogen, and oxygen) with a mass of 1.00 g, burn it in air, and collect 2.20 g of carbon dioxide and 0.400 g water. The molar mass of aspirin is between 170 and 190 g/mol. The molecular form of aspirin is
- (a) $C_6H_8O_5$, (b) $C_9H_8O_4$, (c) $C_8H_{10}O_5$, (d) $C_{10}H_6O_4$, (e) none of these.
- 6. A solution contains the ions Ag⁺, Pb²⁺, and Ni²⁺. Dilute solutions of NaCl, Na₂SO₄, and Na₂S are available to separate the positive ions from each other. In order to effect separation, the solutions should be added in which order?
- (a) Na₂SO₄, NaCl, Na₂S, (b) Na₂SO₄, Na₂S, NaCl, (c) Na₂S, NaCl, Na₂SO₄, (d) NaCl, Na₂S, Na₂SO₄ (e)NaCl, Na₂SO₄, Na₂S
- 7. Which of the following do you need to know to be able to calculate the molarity of a salt solution?
 - I. the mass of salt added
 - II. the molar mass of the salt
 - III. the volume of water added
 - IV. the total volume of the solution
- (a) I, III, (b) I, II, III, (c) II, III, (d) I, II, IV, (e) You need all of the information.
- 8. Which of the following are oxidation-reduction reactions?
 - I. $PCl_3 + Cl_2 \rightarrow PCl_5$
 - II. $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$
 - III. $CO_2 + 2LiOH \rightarrow Li_2CO_3 + H_2O$
 - IV. FeCl₂ + 2NaOH \rightarrow Fe(OH)₂ + 2NaCl
- (a) III, (b) IV, (c) I and II, (d) I, II, and III, (e) I, II, III, and IV.
- 9-10. You have two samples of the same gas in the same size container, with the same pressure. The gas in the first container has a kelvin temperature four times that of the gas in the other container.
- 9. The ratio of the number of moles of gas in the first container compared to that in the second is
- (a) 1:1, (b) 4:1, (c) 1:4, (d) 2:1, (e) 1:2.

- 10. The ratio of number of collisions with the wall in the first container compared to that in the second is
- (a) 1:1, (b) 4:1, (c) 1:4, (d) 2:1, (e) 1:2.
- 11. A balloon has a volume of 1.20 liters at 24.0°C. The balloon is heated to 48.0°C. Calculate the new volume of the balloon.
- (a) 1.20 L, (b) 1.30 L, (c) 1.70 L, (d) 2.10 L, (e) 2.40 L.
- 12. Calculate the density of nitrogen at STP.
- (a) 0.312, (b) 0.625, (c) 0.800, (d) 1.25, (e) 1.60 g/L.
- 13. A 1.00-g sample of a gaseous compound of boron and hydrogen occupies 0.820 L at 1.00 atm and 3°C. What is the molecular formula for the compound?
- (a) BH₃, (b) B₂H₆, (c) B₄H₁₀, (d) B₃H₁₂, (e) B₅H₁₄.
- 14-15. For the reaction given below, 2.00 moles of A and 3.00 moles of B are placed in a 6.00-L container.

$$A(g) + 2B(g) \iff C(g)$$

- 14. At equilibrium, the concentration of A is 0.300 mol/L. What is the concentration of B at equilibrium?
- (a) 0.300, (b) 0.433, (c) 0.500, (d) 0.600 mol/L, (e) none of these.
- 15. At equilibrium, the concentration of A is 0.300 mol/L. What is the value of K?
- (a) 0.146, (b) 0.253, (c) 0.300, (d) 0.589, (e) 1.043.
- 16. Calculate K_p for $H_2O(g) + 1/2O_2(g) \iff H_2O_2(g)$ at 600 K, using the following data:

$$H_2(g) + O_2(g)$$
 \iff $H_2O_2(g)$ $K_p = 2.3 \times 10^6 \text{ at } 600 \text{ K}$
 $2H_2(g) + O_2(g)$ \iff $2H_2O(g)$ $K_p = 1.8 \times 10^{37} \text{ at } 600 \text{ K}$

$$2H_2(g) + O_2(g) = 2H_2O(g) K_p = 1.8 \times 10^{-7} \text{ at 600 K}$$

- (a) 4.4×10^{43} , (b) 9.8×10^{24} , (c) 1.2×10^{-4} , (d) 5.4×10^{-13} , (e) 2.6×10^{-31} .
- 17. A 5.95-g sample of an acid, H₂X, requires 45.0 mL of a 0.500 M NaOH solution for complete reaction (removing both protons). The molar mass of the acid is
- (a) 132, (b) 178, (c) 264, (d) 529, (e) none of these.
- 18. Of energy, enthalpy, work, and heat, how many are non-state functions?
- (a) 4, (b) 3, (c) 2, (d) 1, (e) 0.
- 19. Which of the following statements correctly describes the signs of q and w for the following exothermic process at P = 1 atm and T = 370 K?

$$H_2O(g) \rightarrow H_2O(l)$$

- (a) q and w are negative. (b) q is positive, w is negative. (c) q is negative, w is positive. (d) q and w are both positive. (e) q and w are both zero.
- 20. Given the equation $S(s) + O_2(g) \rightarrow SO_2(g)$, $\Delta H = -296$ kJ, which of the following statement(s) is (are) true?
- I. The reaction is exothermic.
- II. When 0.500 mole sulfur is reacted, 148 kJ of energy is released.
- III. When 32.0 g of sulfur are burned, 2.96×10^5 J of energy is released.
- (a) All are true. (b) None is true. (c) I and II are true. (d) I and III are true. (e) Only II is true.

21. Consider the following processes:

$$2A \rightarrow 1/2B + C$$
 $\Delta H_1 = 5 \text{ kJ/mol}$
 $(3/2)B + 4C \rightarrow 2A + C + 3D$ $\Delta H_2 = -15 \text{ kJ/mol}$
 $E + 4A \rightarrow C$ $\Delta H_3 = 10 \text{ kJ/mol}$

Calculate ΔH for: $C \rightarrow E + 3D$

22. For a particular chemical reaction

$$\Delta H = 5.5 \text{ kJ}$$
 and $\Delta S = -25 \text{ J/K}$

Under what temperature condition is the reaction spontaneous?

- (a) When T < -220 K. (b) When T < 220 K. (c) The reaction is spontaneous at all temperatures.
- (d) The reaction is not spontaneous at any temperature. (e) When T > 220 K.
- 23. For the reaction A + B \rightarrow C + D, ΔH^{o} = +40 kJ and ΔS^{o} = +50 J/K. Therefore, the reaction under standard conditions is
- (a) spontaneous at temperatures less than 10 K.
- (b) spontaneous at temperatures greater than 800 K.
- (c) spontaneous only at temperatures between 10 K and 800 K.
- (d) spontaneous at all temperatures.
- (e) nonspontaneous at all temperatures.
- 24. Consider the freezing of liquid water at -10° C. For this process what are the signs for ΔH , ΔS , and ΔG ?

	ΔH	ΔS	ΔG
Option 1:	+		0
Option 2:	ere-ver	+	0
Option 3:	_	+	_
Option 4:	+		
Option 5:	_		

- (a) Option 1, (b) Option 2, (c) Option 3, (d) Option 4, (e) Option 5.
- 25. Consider the following processes:
 - I. Condensation of a liquid.
 - II. Increasing the volume of 1.0 mol of an ideal gas at constant temperature.
 - III. Dissolving an ionic solid in water.
 - IV. Heating 1.0 mol of an ideal gas at constant volume.

For how many of these is ΔS positive?

26. Which of the following is the best reducing agent?

$$Cl_2 + 2e^- \rightarrow 2Cl^ E^\circ = 1.36 \text{ V}$$

 $Mg^{2+} + 2e^- \rightarrow Mg$ $E^\circ = -2.37 \text{ V}$
 $2H^+ + 2e^- \rightarrow H_2$ $E^\circ = 0.00 \text{ V}$

(a) Cl_2 , (b) H_2 , (c) Mg, (d) Mg^{2+} , (e) Cl^- .

27. A cell is set up with copper and lead electrodes in contact with CuSO₄(aq) and Pb(NO₃)₂(aq), respectively, at 25°C. The standard reduction potentials are:

$$Pb^{2+} + 2e^{-} \rightarrow Pb$$
 $E^{\circ} = -0.13 \text{ V}$
 $Cu^{2+} + 2e^{-} \rightarrow Cu$ $E^{\circ} = +0.34 \text{ V}$

If the Pb^{2+} and Cu^{2+} are each 1.0 M, the potential of the cell, in volts, is:

- (a) 0.46, (b) 0.92, (c) 0.22, (d) 0.58, (e) none of these.
- 28. The galvanic cell described by $Zn(s) \mid Zn^{2+}(aq) \mid \mid Cu^{2+}(aq) \mid Cu(s)$ has a standard cell potential of 1.101 volts. Given that $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^-$ has an oxidation potential of 0.762 volts, determine the reduction potential for Cu^{2+} .
- (a) -1.863, (b) 1.863, (c) -0.339, (d) 0.339 V, (e) none of these.
- 29. If l = 3, how many electrons can be contained in all the possible orbitals?
- (a) 7, (b) 6, (c) 14, (d) 10, (e) 5.
- 30. Order the elements S, Cl, and F in terms of increasing atomic radii.
- (a) S, Cl, F, (b) Cl, F, S, (c) F, S, Cl, (d) F, Cl, S, (e) S, F, Cl.
- 31. Consider the following orderings.

I.
$$Al < Si < P < Cl$$

II. Be
$$<$$
 Mg $<$ Ca $<$ Sr

III.
$$I < Br < Cl < F$$

IV.
$$Na^+ < Mg^{2+} < Al^{3+} < Si^{4+}$$

Which of these give(s) a correct trend in ionization energy?

- (a) III, (b) I, II, (c) I, IV, (d) I, III, IV, (e) none of them.
- 32. Given the following information:

$$\begin{array}{lll} \text{Li(s)} \rightarrow \text{Li(g)} & \text{heat of sublimation of Li(s)} = 166 \text{ kJ/mol} \\ \text{HCl(g)} \rightarrow \text{H(g)} + \text{Cl(g)} & \text{bond energy of HCl} = 427 \text{ kJ/mol} \\ \text{Li(g)} \rightarrow \text{Li}^+(\text{g)} + \text{e}^- & \text{ionization energy of Li(g)} = 520. \text{ kJ/mol} \\ \text{Cl(g)} + \text{e}^- \rightarrow \text{Cl}^-(\text{g}) & \text{electron affinity of Cl(g)} = -349 \text{ kJ/mol} \\ \text{Li}^+(\text{g)} + \text{Cl}^-(\text{g}) \rightarrow \text{LiCl(s)} & \text{lattice energy of LiCl(s)} = -829 \text{ kJ/mol} \\ \text{H2(g)} \rightarrow 2\text{H(g)} & \text{bond energy of H2} = 432 \text{ kJ/mol} \\ \end{array}$$

4

Calculate the net change in energy for the reaction $2\text{Li}(s) + 2\text{HCl}(g) \rightarrow 2\text{LiCl}(s) + \text{H}_2(g)$

- (a) 363, (b) -73, (c) -179, (d) -562 kJ, (e) None of these.
- 33. The hybridization of the central atom in ClF₃ is:
- (a) \rm{sp} , (b) $\rm{sp^2}$, (c) $\rm{sp^3}$, (d) $\rm{dsp^3}$, (e) $\rm{d^2sp^3}$.
- 34. Which of the following molecules has a bond order of 1.5?
- (a) O_2^+ , (b) N_2 , (c) O_2^- , (d) C_2 , (e) none of these.

35-36. The following initial rate data were found for the reaction

$$2MnO_4^- + 5H_2C_2O_4 + 6H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

$[MnO_4^-]_0$	$[H_2C_2O_4]_0$	$[H^{+}]_{0}$	Initial Rate (M/s)
1×10^{-3}	1×10^{-3}	1.0	2×10^{-4}
2×10^{-3}	1×10^{-3}	1.0	8×10^{-4}
2×10^{-3}	2×10^{-3}	1.0	1.6×10^{-3}
2×10^{-3}	2×10^{-3}	2.0	1.6×10^{-3}

35. Which of the following is the correct rate law?

- (a) Rate = $k[MnO_4^{-1}]^2[H_2C_2O_4]^5[H^{+1}]^6$
- (b) Rate = $k[MnO_4-]^2[H_2C_2O_4][H^+]$
- (c) Rate = $k[MnO_4^-][H_2C_2O_4][H^+]$
- (d) Rate = $k[MnO_4^-]^2[H_2C_2O_4]$
- (e) Rate = $k[MnO_4-]^2[H_2C_2O_4]^2$

36. What is the value of the rate constant? (a)
$$2 \times 10^5$$
 M·s⁻¹, (b) 2×10^5 M⁻²·s⁻¹, (c) 200 M⁻¹·s⁻¹, (d) 200 M⁻²·s⁻¹, (e) 2×10^{-4} M·s⁻¹.

- 37. In any cubic lattice an atom lying at the corner of a unit cell is shared equally by how many unit cells?
- (a) 1, (b) 2, (c) 4, (d) 8, (e) 16.
- 38. A certain metal fluoride crystallizes in such a way that the fluoride ions occupy simple cubic lattice sites, while the metal atoms occupy the body centers of half the cubes. The formula for the metal fluoride is:
- (a) MF, (b) MF₂, (c) M₂F, (d) MF₄, (e) MF₈.
- 39. What is the electron configuration of the Mn(II) ion?
- (a) $[Ar]4s^23d^5$, (b) $[Ar]4s^13d^5$, (c) $[Ar]4s^23d^3$, (d) $[Ar]3d^5$, (e) none of these.
- 40. Which of the following is paramagnetic?
- (a) $Zn(H_2O)6^{2+}$, (b) $Co(NH_3)6^{3+}$ (strong field), (c) $Cu(CN)3^{2-}$, (d) $Mn(CN)6^{2-}$ (strong field),
- (e) none of these.

