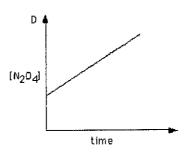

九十七學年度 國立中正大學化學暨生物化學系 大學入學甄試化學性向測驗 試題


選擇	題(單選);成	対績滿分 = 100分	考試日期:04/19/2008 星期六				
1.	The solubility of butanol, $CH_3(CH_2)_3OH$, is 9.0 g per 0.10 L. What is the molarity (M) of the solution? (Atomic weights: $C = 12.01$, $O = 16.00$, $H = 1.008$).						
	(A) 0.90	(B) 0.090	(C) 1.5	(D) 0.12	(E) 1.2		
2.	The density of a 64.0% by weight aqueous solution of glycerol ($C_3H_8O_3$) is 1.1663 g/cm ³ . What is the molarity (M) of the compound? (Atomic weights: $C = 12.01$, $H = 1.008$, $O = 16.00$).						
	(A) 7.51	(B) 8.62	(C) 8.41	(D) 7.82	(E) 8.11		
3.	How many grams of KOH are required to prepare 250.0 mL of a 0.50 M KOH solution? (Atomic weights: $K = 39.1$, $O = 16.00$, $H = 1.008$).						
	(A) 7.0	(B) 14	(C) 12	(D) 10	(E) 8.0		
4.	What volume (mL) of concentrated HI (5.51 M) should be used to prepare 125.0 mL of a 0.100 M solution? (Atomic weights: H = 1.008, I = 126.9). (A) 2.12 (B) 2.72 (C) 2.39 (D) 2.27 (E) 2.58						
5.	Antimony (Ator	nic weight 121.75) 8 and 122.9041. W	has two naturally-	occurring isotopes age abundance of the			
6.	Which of the following sets of quantum numbers is not allowed? (A) $n = 3$, $l = 0$, $m_l = 0$ (B) $n = 2$, $l = 2$, $m_l = -1$ (C) $n = 2$, $l = 1$, $m_l = 0$ (D) $n = 3$, $l = 1$, $m_l = -1$						
7.	What is the total (A) 10	number of orbital (B) 16	s in the n = 5 level ⁴ (C) 12	? (D) 25	(E) 5		

8.	Balance the following equation. What is the coefficient of SeF ₆ in the balanced equation?							
	Se +	$BrF_5 \rightarrow \underline{\hspace{1cm}} SeF_6$	+ BrF ₃					
		(B) 4		(D) 5	(E) 3			
9.	Calculate the rel	Calculate the relative rate of effusion of O_2 compared to O_3 .						
	(Atomic weight: $O = 16.00$).							
	(A) 1.22	(B) 1.49	(C) 1.30	(D) 0.820	(E) 0.672			
10.	Which of the following is NOT a postulate of the kinetic molecular theory?							
	(A) The average kinetic energy of the particles is directly proportional to the absolute temperature.							
	(B) Gas particles have their mass concentrated in the nucleus of the atom.							
	(C) The forces of attraction between the particles are insignificant.							
	(D) The gas particles undergo elastic collisions with the container walls.							
11.	Which one of the following relationships when graphed gives a straight line for helium gas?							
	I. Kinetic Energy versus T at constant pressure and volume							
	II. P versus 1/V at constant temperature for a constant mass							
	III. V versus 1/T at constant pressure for a constant mass							
	(A) I & II	(B) I	(C) II & III	(D) III	(E) II			
12.	Balance the following equation and indicate the coefficients of I ₂ and NO ₂ .							
	$\underline{\hspace{1cm}}$ $NO_3^- + \underline{\hspace{1cm}}$ $I_2 + \underline{\hspace{1cm}}$ $H^+ \rightarrow \underline{\hspace{1cm}}$ $IO_3^- + \underline{\hspace{1cm}}$ $NO_2 + \underline{\hspace{1cm}}$ H_2O							
	(A) 2, 4	(B) 1, 4	(C) 2, 5	(D) 1, 6	(E) 2, 6			
13.	The density of a 0.872 M aqueous solution of K ₂ CrO ₄ is 1.129 g/cm ³ ? What is the molality (m) of the solution?							
	(Atomic weights: $K = 39.10$, $Cr = 52.00$, $O = 16.00$).							
	(A) 0.872	(B) 0.232	(C) 0.909	(D) 0.0909	(E) 1.50			
14.	Which graph best describes the kinetics of the following reaction if it is first order in							
	N_2O_4 ?							
	$N_2O_4(g) \rightarrow 2NO_2(g)$							

- (A) Graph D
- (B) Graph C
- (C) Graph A
- (D) Graph B
- 15. Of the three isomeric C₃H₄ hydrocarbons shown below, how many can exist with all the carbon and hydrogen nuclei located in a single plane?

- (A) 0
- **(B)** 1
- (C)2
- (D) 3
- 16. Which of the following molecules has the shortest nitrogen to nitrogen bond?
 - $(A) N_2O$
- (B) N_2H_4
- (C) N₂O₄
- 17. Given rate constant, $k = 6.2 \times 10^{-3} \text{ s}^{-1}$, for a reaction which is first order in A, what is the initial rate of the reaction (M/s) when the initial concentration of A is 0.0050 M.
 - (A) 9.0×10^{-5}
- (B) 3.1×10^{-5} (C) 6.2×10^{-5} (D) 1.2×10^{1}
- (E) 1.2

- 18. Which of the following is false?
 - (A) Reaction rates depend on temperature, reactant structure, concentration of reactants and the presence of catalysts.
 - (B) Catalysts shift reaction equilibrium toward the side of the products.
 - (C) Activation energy is required for both exothermic and endothermic reactions.
 - (D) Enzymes are catalysts in living organisms.
- 19. The equilibrium constant, K_e , for the following reaction at 1200° K is 5.0.

$$CO(g) + 2 H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$$

Given the concentrations [CO] = 0.05 M, $[H_2] = 0.08 \text{ M}$, $[CH_4] = 0.04 \text{ M}$ and $[H_2O] =$

- 0.04 M one can conclude that:
- (A) the system is not at equilibrium and the reaction will proceed to the left.
- (B) the system is at equilibrium and no net change will occur
- (C) the system is not at equilibrium and the reaction will proceed to the right
- 20. What is the conjugate base of aniline, C₆H₅NH₂?
 - (A) $C_6H_5NH^-$ (B) $C_6H_5NH_2^+$ (C) $C_6H_5NH_2^+$ (D) $C_6H_5NH_3^+$ (E) $C_6H_5NH_4^+$