國立中正大學九十二學年度碩士班招生考試試題

系所別:化學暨生物化學系 科 目:一般化學

第 / 頁,共 6 頁

- (5)	目:一般化	AT LOND						
本	試題共50是	0單一選擇題	, 每題2分,	滿分 100 分	· 答錯不倒扣。請將	NA NA		
案	依序寫在答	案卷上。						
1.	Which of the	following atomic	symbols is not c	orrect?				
	(A) ${}_{6}^{14}$ C	(B) ³⁷ Cl	$(C)_{15}^{32}P$	$(D)_{19}^{39}K$	(E) 14N			
2.	Which of the	following elemen	nt is the transition	metal?				
	(A) Rn	(B) Co	(C) Br	(D) Ca	(E) Sn			
3.	What mass of styrene (molar mass 104.1 g/mol) contains 4.50×10 ²⁰ molecules of							
	styrene?							
	(A) 7.48×10 ⁻⁴	-	(B) 7.48×10^{-3} g		(C) 7.78×10 ⁻² g			
	(D) 7.78×10 ⁻³ g		(E) 7.48×10 ⁴ g	3				
4.	Sulfuric acid may be prepared by the following process:							
			All Street Stree	• 2Fe ₂ O ₃ + 8SO ₂				
		$O_2 + O_2 \longrightarrow$						
		3 + H ₂ O			7.0			
	(A) 6.11	(B) 5.00	produced from 5					
	(A) 0.11	(B) 5.00	(C) 7.30	(D) 10.0	(E) 20.0			
5.					r in separate flasks to mak	e		
			on has the largest					
	(A) calcium carbonate (D) silver chloride		(B) potassium phosphate (C) aluminum hydrox			e		
	(D) sliver chio	nde	(E) sodium chl	onde				
6.	What volume of 0.250 M H ₂ SO ₄ is required to react completely with 25.0 mL of 1.500 M NaOH?							
	(A) 150.0 mL	(B) 50.0 mL	(C) 300.0 mL	(D) 75.0 mL	(E) none of these			
7.	Calculate the d	lensity of nitroge	n gas at STP.	(atomic we	ight of nitrogen: 14.0)			
			(C) 0.800 g/L					
8.					ume at 25.0°C and 1.35			
			partial pressure of					
	(A) 0.473 atm	(B) 0.675 atm	(C) 0.878 atm	(D) 1.32 atm	(E) 1.35 atm			
9.	Which of the following statements is true for ideal gases?							
	(A) The temperature of the gas sample is directly related to the average velocity of the gas particles.							
	(B) A gas exerts pressure because its molecules collide with the walls of the container.							
	(C) At STP, 1.0 L of Ar _(g) contains about twice the number of atoms as 1.0 L of Ne _(g) because the molar mass of Ar is about twice that of Ne.							
	(D) The gas particles in a sample attract each other.							
	(E) None of the above.							

國立中正大學九十二學年度碩士班招生考試試題

系所別:化學暨生物化學系 目:一般化學

第 2 頁, 共 6 頁

- 11. Which of the following statements about the equilibrium is true?
 - (A) Catalysts shift the position of an equilibrium.
 - (B) The equilibrium constant is independent of temperature.
 - (C) When two opposing processes proceed at identical rates, the system is at equilibrium.
 - (D) The concentration of the products equals that of the reactants and both are constant at equilibrium.
 - (E) An endothermic reaction shifts toward reactants when heat is applied.
- A sample of solid NH₄NO₃ was placed in an evacuated container and heated so that it decomposed explosively according to the following reaction:

$$NH_4NO_{3(s)} \implies N_2O_{(g)} + 2H_2O_{(g)}$$

At equilibrium the total pressure in the container is 3.20 atm at 500°C. Calculate Ko.

- (A) 3.10 atm³ (B) 1.23 atm³ (C) 2.56 atm² (D) 4.87 atm³ (E) 1.14 atm²

- 13. The following acids are listed in the order of decreasing acid strength in water:

HI > HNO2 > CH3COOH > HCIO > HCN.

According to Brønsted-Lowry theory, which of the following ions is the weakest base?

- (B) NO₂
- (C) CH3COO (D) CIO

- For nitrous acid, HNO₂, K_a = 4.0 × 10⁻⁴. Calculate the pH of 0.25 M HNO₂.
 - (A) 2.00
- (B) 2.30
- (D) 3.70
- (E) none of these.
- 15. Consider a solution consisting of the following two buffer systems:

$$H_2CO_3 \rightleftharpoons HCO_3 + H^+$$

 $H_2PO_4 \rightleftharpoons HPO_4^{2-} + H^+$

$$pK_a = 6.4$$

$$pK_a = 7.2$$

At pH 6.4, how do the amounts of acid and conjugate base compare?

- (A) $[H_2CO_3] > [HCO_3]$ and $[H_2PO_4] > [HPO_4^2]$
- (B) $[H_2CO_3] = [HCO_3]$ and $[H_2PO_4] > [HPO_4]$
- (C) $[H_2CO_3] = [HCO_3]$ and $[H_2PO_4] < [HPO_4^2]$
- (D) $[H_2CO_3] > [HCO_3]$ and $[H_2PO_4] < [HPO_4^2]$
- (E) $[H_2CO_3] < [HCO_3]$ and $[H_2PO_4] < [HPO_4^2]$
- 16. Buffers in the human body
 - (A) help to maintain a constant blood pH.
 - (B) help to keep the body temperature constant.
 - (C) help change the blood plasma pH when foods are eaten.
 - (D) precipitate proteins so enzyme are inactive.

- (E) none of these.
- Consider a solution made by mixing 500.0 mL of 4.0 M NH₃ and 500.0 mL of 0.4 M AgNO₃. Ag⁺ reacts with NH₃ to form [Ag(NH₃)₂]⁺:

 $AgNH_3^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+ \quad K = 1.72 \times 10^7$

What is the concentration of Ag+ at equilibrium?

(A) 2.0 M

(B) 1.2×10^{-8} M

(C) 2.2×10^{-9} M

(D) 1.6 M

(E) 4.5×10^{-9} M

國立中正大學九十二學年度碩士班招生考試試題

(D) 326 K

(E) 405 K

18. 30.0 mL of pure water at 280 K is mixed with 50.0 mL of pure water at 330 K. What is

(C) 320 K

系所別:化學暨生物化學系 科 目:一般化學

the final temperature of the mixture?

(B) 311 K

(A) 290 K

第3頁,共6頁

(A) -22.7 J		c of NH ₃ consume		
Using the follo		(C) 11.0 KS	(D) +22.7 J	(E) +44.0 kJ
		culate $\Delta H^{o}_{f(298)}$ for AgBr _(s) + 1/2 I ₂		-54.0 kJ
(A) -123.5 kJ/	mol	(B) +77.3 kJ/n	nol	r Br _{2(g)} = $+30.9$ kJ/mol (C) $+61.8$ kJ/mol
(A) As long as(B) For any pro(C) If ΔS_{surr} = .	the disorder of to beess, ΔS_{surr} and ΔS_{sys} , the process	he surroundings i ΔS_{sys} have opposes is at equilibriu	ite signs. m.	
(0) 111 15 2010	o for a chemicar	reaction at consta	nt temperature.	(E) note of these
J/mol K. Assur	ning these value	, , , , , , , , , , , , , , , , , , , ,		
(A) 0°C		(C) 353°C	(D) -80°C	(E) none of these
		00 mole of a mon	atomic ideal gas	s from 25°C to 125°C at
		(C) 18.0 J/K	(D) 10.8 J/K	(E) none of these
			(D) 30	(E) 10
$Pb + PbO_2 + 2I$	$H_2SO_4 + 2H^+$ —		2H ₂ O. For suc	ch a reaction E° is 2.04 V.
		(C) -197 kJ	(D) –98 kJ	(E) -0.121 kJ
concept "Electr (A) the emission	on in atoms haven spectrum of hy	e quantized energ ydrogen	ies". (B) the photoe	electric effect
the Schröeding (A) n = 9 l = (C) n = 6 l =	er equation for the $m_1 = -4$ m_s -5 $m_1 = -1$ m_s	the electron in the $= 1/2$ (B)	hydrogen atom: n = 8 $l = 2$ r	$m_1 = 2$ $m_s = 1/2$
	(A) -123.5 kJ/m (D) -77.3 kJ/m Which of the final (A) As long as (B) For any process (C) If ΔS _{surr} = -(D) ΔH° is zero. For the process J/mol K. Assurpoint of benzer (A) 0°C Calculate ΔS for constant pressure (A) 3.61 J/K How many elect (A) 12 A common car Pb + PbO ₂ + 21 Calculate ΔG° (A) -787 kJ From the follow concept "Electronic (A) the emission (C) diffraction Which of the for the Schröeding (A) n = 9 1 = 10 (C) n = 6 1 = 10 (C) n = 6 1 = 10 (C)	(A) –123.5 kJ/mol (D) –77.3 kJ/mol Which of the following is true? (A) As long as the disorder of the solution of the following is true? (B) For any process, ΔS _{surr} and (C) If ΔS _{surr} = - ΔS _{sys} , the procest (D) ΔH° is zero for a chemical of the process benzene(I) ————————————————————————————————————	Which of the following is true? (A) As long as the disorder of the surroundings is (B) For any process, ΔS _{surr} and ΔS _{sys} have opposite (C) If ΔS _{surr} = - ΔS _{sys} , the process is at equilibrius (D) ΔH° is zero for a chemical reaction at constant For the process benzene(I) — benzene(III) at 1 a J/mol K. Assuming these values are independent point of benzene? (A) 0°C (B) 80°C (C) 353°C Calculate ΔS for the heating 3.00 mole of a monsconstant pressure. (A) 3.61 J/K (B) 6.02 J/K (C) 18.0 J/K How many electrons are transferred in the follow 2ClO3 + 12H + 10I — 5 I ₂ + Cl ₂ + 6H ₂ O? (A) 12 (B) 5 (C) 2 A common car battery carries out the reaction: Pb + PbO ₂ + 2H ₂ SO ₄ + 2H — 2PbSO ₄ + 2Calculate ΔG° at 25°C. (A) -787 kJ (B) -394 kJ (C) -197 kJ From the following list of observations choose the concept "Electron in atoms have quantized energy (A) the emission spectrum of hydrogen (C) diffraction (D) scattering of α particles which of the following sets of quantum numbers the Schröedinger equation for the electron in the (A) n = 9 1 = 8 m _I = -4 m _S = 1/2 (B) (C) n = 6 1 = -5 m _{II} = -1 m _S = 1/2 (D)	(A) −123.5 kJ/mol (B) +77.3 kJ/mol (C) −77.3 kJ/mol (E) −61.8 kJ/mol Which of the following is true? (A) As long as the disorder of the surroundings is increasing, a process, ΔS _{surr} and ΔS _{sys} have opposite signs. (C) If ΔS _{surr} = − ΔS _{sys} , the process is at equilibrium. (D) ΔH° is zero for a chemical reaction at constant temperature. For the process benzene(t) → benzene(g) at 1 atm, ΔH° = 30.5 J/mol K. Assuming these values are independent of temperature point of benzene? (A) 0°C (B) 80°C (C) 353°C (D) −80°C Calculate ΔS for the heating 3.00 mole of a monatomic ideal gas constant pressure. (A) 3.61 J/K (B) 6.02 J/K (C) 18.0 J/K (D) 10.8 J/K How many electrons are transferred in the following reaction: 2ClO₃ + 12H + 10Γ → 5 I₂ + Cl₂ + 6H₂O? (A) 12 (B) 5 (C) 2 (D) 30 A common car battery carries out the reaction: Pb + PbO₂ + 2H₂SO₄ + 2H² → 2PbSO₄ + 2H₂O. For succalculate ΔG° at 25°C. (A) −787 kJ (B) −394 kJ (C) −197 kJ (D) −98 kJ From the following list of observations choose the one that most concept "Electron in atoms have quantized energies". (A) the emission spectrum of hydrogen (B) the photocolor of the following sets of quantum numbers do not represent the Schröedinger equation for the electron in the hydrogen atom (A) n = 9 1 = 8 m₁ = -4 m₅ = 1/2 (B) n = 8 1 = 2 m₂ (C) n = 6 1 = -5 m₁ = -1 m₅ = 1/2 (D) n = 6 1 = 5 m₂ (C) n = 6 1 = 5 m₃ (C) n = 6 1 = 5

28		onfiguration re	presents the grou	and state? (atom	ic number: Ni, 28; Ga, 31;
	As, 33; Co, 27)	45	3 <i>d</i>	10	
	(A) Ni: [Ar]	11 1 1	<i>5u</i> ↑ ↑ ↑	4p ↑ ↑ ↑	
	(B) Ga: [Ar]		· 	11 11	11 manippe 20 moons of
			1.11 11 14	- 1 1 1	
			* · * * *	14 1	
	(E) none of these			1* 1	
29	. Place the elements	S, Cl, F in or	der of increasing	ionization ener	gy.
	(A) S < Cl < F		(B) Cl < F < S		(C) F < S < Cl
	(D) $F < Cl < S$		(E) S < F < C1		
30.	. Which molecule d	oes not have a	dipole moment	?	
		B) CO	(C) NCl ₃	(D) BF ₃	(E) H ₂ O
31.	. Calculate the energ	gy of an H—C	l bond from the	following data.	
	$H_{2(g)} +$	$Cl_{2(g)} \longrightarrow$	2HCl _(g)	$\Delta H^{o} = -184 \text{ k}.$	Ţ
	H _{2(g)} -	→ 2H _(g)		$\Delta H^{\circ} = 432 \text{ kJ}$	
		\longrightarrow 2Cl _(g)		$\Delta H^{o} = 239 \text{ kJ}$	
	(A) 770 kJ (I	107	(C) 518 kJ		(E) 428 kJ
32	Which molecule o	heve the octet	rule?		
34.		B) NO ₂	(C) SF ₆	(D) O ₃	(E) PCl ₅
33.	The hybridization	of the central	atom in XeCl ₃ ⁺ i	S	
	(A) sp (I		(C) sp ³	(D) dsp ³	(E) d^2sp^3
34.	Which statement is	s false?			
	(A) C2 is paramagi	netic.	(B) B ₂ is param	agnetic.	
	(C) The C-C bon	d in C ₂ ²⁻ is str	onger than the or	ne in CH ₃ CH ₃ .	
	(D) The O—O bor	nd in O2 ⁺ is sho	orter than the one	e in O_2 .	(E) none of these
35.	Initial rate data have			mperature for th	ne gaseous reaction
		$+2H_2 \longrightarrow 1$			
	[NO]		initial	The state of the s	
	0.10			0150	
	0.10			0225	
	What is the numeri	0.20		0600	
		3.0×10^{-3}		(D) 0.75	(E) 3.0×10^{-4}
	(A) 7.5	5) 3.0 ^ 10	(C) 380	(D) 0.73	(E) 3.0 × 10
36.	The rate constant for	or a reaction in	creases from 10	.0 s ⁻¹ to 100.0 s	when the temperature
	is increased from 3	00 K to 400 K			
	kJ/mol? (R = 8.314 (A) 23.0 (B		(C) 5.0	(D) 18.3	(E) 45.6
37	By consider handir	a in liquide er	nd solids arrange	the following	substance from highest to
	lowest melting poin				saostance from mgnest to
					(C) $SiO_2 > Na > NaCl > Cl_2$
	(D) NaCl > SiO ₂ >	$Na > Cl_2$	(E) SiO ₂ > NaC	$l > Na > Cl_2$	

 38. Aluminum metal crystallizes in a face-centered cubic structure. The relationship the radius r of an Al atom and the length of an edge E of the unit cell is (A) r = E/2 (B) r = √2E/4 (C) r = √3E/4 (D) r = 2E (E) r = 4E 39. The triple point of a substance is 	
	lowered
39. The triple point of a substance is	lowered
(A) the point at which its solid, liquid and vapor are all in equilibrium.	lowered
(B) the point at which the vapor pressure of the solid is 1 atm.	lowered
(C) the point at which the liquid starts to condense as the temperature of vapor is (D) the point at which the density of the solid and the liquid are equal. (E) none of these	
(L) Holle of these	
40. The density of a solution containing 296.6 g of Mg(NO ₃) ₂ (formula weight: 148.3 liter is 1.114 g/mL. The molarity of the solution is	(3) per
(A) 2.000 M (B) 2.446 M (C) 6.001 M (D) 1.805 M (E) none of the	iese
41. The lattice energy of NaI is 686 kJ/mol and its heat of solution is -7.6 kJ/mol. hydration energy of NaI _(s) is	The
(A) +15.2 kJ (B) -678 kJ (C) -694 kJ (D) +678 kJ (E) +694 kJ	
42. Choose the correct molecular structure for XeF ₄ from the choices below.	
	(C) tetrahedral
43. The structure of the complex ion NiCl ₄ ² is tetrahedral. The number of unpaired e in this complex is	lectrons
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4	
44. Hemoglobin is a complex of	
(A) Co^{3+} (B) Mg^{2+} (C) Fe^{3+} (D) Sc^{3+} (E) Fe^{2+}	
45. The half-life of the Cs-131 nucleus is 30 years. After 90 years, about 6 g remain. original mass of the Cs-131 sample is closest to	The
(A) 30 g (B) 40 g (C) 50 g (D) 60 g (E) 70g	
46. Which of the following is optically active (i.e. chiral)?	
(A) dimethylamine (B) dichloromethane (C) 2-chloropropa (D) 2-chlorobutane (E) 3-chloropentane	ine
(E) 3-chioropentane	
47. The boiling point of methanol is much higher than that of ethane primarily because (A) the difference in molar masses of methanol and ethane.	se of
 (B) the hydrogen bonding in methanol. (C) the significant molecular size difference between methanol and ethane. (D) the carbon-oxygen double bond in methanol. (E) none of these. 	
30. The complementary models and appeared by an DNA sourcess GMCTAC CT	
48.	
O CH CH OC CH CH C	
48. $ \begin{array}{c} O & O \\ \parallel & \parallel \\ -O-CH_2-CH_2-OC-CH_2-CH_2-C \end{array} $	
What monomer(s) is/are needed to make the polymer shown above?	

II. HOOCCH₂CH₂COOH V. HOOCCH=CHCOOH

(C) III

I. HOCH₂CH₂OH IV. HOCH=CHOH

(B) I and II

(A) II

III. HOCH2CH2COOH

(D) IV and V (E) II and III

國立中正大學九十二學年度碩士班招生考試該

所別:化學暨生物化學系 目:一般化學

第6頁,共

49. The overall shape of a protein is maintained by

(A) hydrogen bonding

(B) ionic bonds

(C) dipole-dipole bonding

(D) covalent bonds

(E) all of these

50. The complementary nucleic acid sequence for the DNA sequence GAC TAC GTT AGC is

(A) GAC TAC GTT AGC

(B) TCA GCA TGG CTA (C) CGA TTG CAT CAG

(D) CTG ATG CAA TCG

(E) none of these